

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS
SECOND EXAMINATION IN SCIENCE - 2008/2009
SECOND SEMESTER (Sep./Nov., 2010)
ST 204-STATISTICAL INFERENCE II
(REPEAT)

Answer all questions

Time : Two hours

1. (a) i. What are non-parametric test? In what ways are they different from parametric tests?
ii. Point out advantages and disadvantages of non-parametric test?
(b) The following data relate to the daily production of cement (in m.tonnes) in a large plant for 30 days:

11.5	10.0	11.2	10.0	12.3	11.1	10.2	9.6
9.3	10.7	11.3	10.4	11.4	12.3	11.4	10.2
10.8	11.9	12.4	9.6	10.5	11.6	8.3	9.3
8.7	11.6	10.4	9.3	9.5	11.5		

Use sign test to test the null hypothesis that the plant's average daily production cement is 11.2 m .tonnes against the alternative hypothesis that the average daily production of cement is less than 11.2 m.tonnes at the 0.05 level of significance.
(c) The following is an arrangement of 25 men, M, and 15 women, W, lined up to purchas tickets for a premier picture show:
$\underline{M} \quad \underline{M M M} \quad \underline{W} \quad \underline{M M} \quad \underline{W} \quad \underline{W} \quad \underline{M} \quad \underline{W}$ MMM W MM WWW MMMMMM WWW MMMMMM Test for randomness at the 5% level of significance.
2. A company sells detergent packed in two machines. From past experience, the compan knows that the amount of detergent boxes packed in the two machines are normally dis tributed. The company takes a random sample of 25 boxes from the output of each machin and finds that the mean weight and standard deviation of the detergent in the boxes from machine 1 is 1064 gms and 100 gms respectively. For the sample in machine 2, the mean 1024 gms and standard deviation is 70 gms .
(a) Can the company claim with 5% level of significance that the boxes of detergent fron machine 1 contain more than 1000 gms .
(b) Test at the 5% level of significance that the amount of detergent the boxes of bot: machines is same.
3. (a) The following table shows the association among 1000 criminals between their weigh and mentality. Calculate the coefficient of contingency between the two.

Weight in pounds

Mentality	$110-120$	$120-130$	$130-140$	$140-150$	Above 150	Total
Normal	50	102	198	210	240	800
Week	30	38	72	30	30	200
Total	80	140	270	240	270	1000

(b) i. Do you find any association between the temperaments of brothers and sisters from the following data:

Good natured brothers and good natured sisters 1, 230
Good natured brothers and sullen sisters 850
Sullen brothers and good natured sisters 530
Sullen brothers and sullen sisters 980.
(c) Test the consistency of the data given below.

Case I

$$
\begin{array}{ll}
(\mathrm{AB})=200 & (\mathrm{~A})=300 \\
(\alpha)=200 & (\mathrm{~B})=250 \\
(\alpha \beta)=150 & (\mathrm{~N})=500
\end{array}
$$

Case II

$$
\begin{array}{ll}
(\mathrm{AB})=250 & (\mathrm{~A})=150 \\
(\alpha \mathrm{~B})=1000 & (\alpha \beta)=600 \\
(\beta)=500 & (\mathrm{~N})=1750
\end{array}
$$

The capital letters A and B to represent the presence of the attributes, α and β to represent absence of the attributes and N is the total number of observations.
4. (a) Explain what is meant by a minimax decision rule.
(b) Each item produced by a machine is subjected to a quick test which has three results: r_{1} (too small), r_{2} (correct size) and r_{3} (too big). If the item really is the correct size, the probabilities of these results are $P\left(r_{1}\right)=0.1, P\left(r_{2}\right)=0.7$ and $P\left(r_{3}\right)=0.2$, while if it is wrong size the probabilities are $P\left(r_{1}\right)=0.4, P\left(r_{2}\right)=0.3$ and $P\left(r_{3}\right)=0.3$. After each item is tested it is either sold or scrapped. If an item of incorrect size is sold, there is a penalty cost of Rs. 10, while if an item is scrapped a cost Rs. 3 is incurred.
i. List the possible decision rules for deciding whether each item should be scrapped.
ii. Calculate the risk table and find the minimax decision rule.
iii. If the prior information, the probability of the item really correct size is 0.6 which is the best of these strategies.

