EASTERN UNIVERSITY, SRI LANKA Onipergity, sil

DEPARTMENT OF MATHEMATICS
THIRD EXAMINATION IN SCIENCE - 2008/2009
SECOND SEMESTER (Sep./Nov., 2010)
MT301 - GROUP THEORY
(PROPER \& REPEAT)

1. (a) Define the term group.
(b) Let p be a fixed positive prime and $G=\{1,2, \ldots, p-1\}$. If the binary operation of multiplication modulo p, denoted by \odot_{p}, is defined on G, show that $\left(G, \odot_{p}\right)$ is a group
(c) i. Let H be a non-empty subset of a group G. Prove that, H is a subgroup of G if and only if $a b^{-1} \in H, \quad \forall a, b \in H$.
ii. Let H and K be two subgroups of a group G. Is $H \cup K$ a subgroup of G ? Justify your answer.
iii. Let $\left\{H_{\alpha}\right\}_{\alpha \in I}$ be an arbitrary family of subgroups of a group G. Prove that $\bigcap_{\alpha \in I} H_{\alpha}$ is a subgroup of G.
2. (a) State and prove the Lagrange's theorem for a finite group G.

Let G be a group and let H and K be subgroups of G such that $|H|=12$ and $|K|=5$. Prove that $H \cap K=\{e\}$, where e is the identity element of G.
(b) Let G^{\prime} be the commutator subgroup of G. Prove the followings:
i. G is abelian if and only if $G^{\prime}=\{e\}$, where e is the identity element of G. ii. $G^{\prime} \unlhd G$.
iii. Let F be the group of all 2×2 matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$, where $a d \neq 0$, under matrix multiplication. Show that F^{\prime}, the commutator subgroup of F, precisely the set of all matrices of the form $\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$.
3. (a) State and prove the first isomorphism theorem.
(b) Let H and K be two normal subgroups of a group G such that $K \subseteq H$. Prove that
i. $K \unlhd H$;
ii. $H / K \unlhd G / K$;
iii. $\frac{G / K}{H / K} \cong G / H$.
4. (a) Let G be a group and $g_{1}, g_{2} \in G$. Define a relation " \sim " on G by

$$
g_{1} \sim g_{2} \Leftrightarrow \exists g \in G \text { such that } g_{2}=g^{-1} g_{1} g .
$$

Prove that " \sim " is an equivalence relation on G.
Given $a \in G$, let $\Gamma(a)$ be denote the equivalence class containing a. Show that:
i. $|\Gamma(a)|=|G: C(a)|$, where $C(a)=\{x \in G / a x=x a\}$;
ii. $a \in Z(G) \Leftrightarrow \Gamma(a)=\{a\}$, where $Z(G)$ is the center of the group G.
(b) Write down the class equation of a finite group G. Hence or otherwise, prove that the center of G is non-trival if the order of G is p^{n}, where p is a positive prime number.
5. (a) Define the term p-group.

Let G be a finite abelian group and let p be a prime number which divides the order of G. Prove that G has an element of order p.
(b) Define the term homomorphism.

Let G be the group of all real 2×2 matrices of the form

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

such that $a d-b c \neq 0$, under matrix multiplication. Let \bar{G} be the group of all non-zero real numbers under multiplication. Define a mapping

$$
\phi: G \rightarrow \bar{G} \text { by } \phi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

Prove that ϕ is a homomorphism of G onto \bar{G}.
6. (a) Define the following terms as applied to a group:
i. permutation;
ii. cycle of order r.
(b) Prove that the permutation group on n symbols,S_{n}, is a finite group of order n !. Is S_{n} abelian for $n>2$? Justify your answer.
(c) Prove that the set of even permutations A_{n} forms a normal subgroup of S_{n}. Hence show that $\frac{S_{n}}{A_{n}}$ is a cyclic group of order 2 .
(d) Express the permutation σ in S_{8} as a product of disjoint cycles, where

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 5 & 7 & 4 & 2 & 8 & 1 & 6
\end{array}\right)
$$

