

EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE - 2005/2006 SECOND SEMESTER (March/April, 2008) MT 204 - RIEMANN INTEGRAL AND SEQUENCES AND SERIES OF FUNCTIONS (PROPER AND REPEAT)

Answer all Questions

Time: Two hours

- Q1. (a) State and proof the necessary and sufficient condition for the integrability of a bounded function on [a,b]. Hence show that if f is Riemann integrable and there exists a number c such that L(P,f) < c < U(P,f) if and only if $|U(P,f)-c| < \varepsilon$ and $|c-L(P,f)| < \varepsilon$. [60 marks]
 - (b) Prove or disprove the followings:
 - (i) Every continuous function is Riemann integrable;

(ii)
$$f(x) = \begin{cases} 0, & \text{if } x \in \mathbb{Q} \\ 1, & \text{if } x \in \mathbb{Q}^c \text{ is Riemann integrable.} \end{cases}$$

[40 marks]

- Q2. (a) Explain an improper integral of the first, second and third kinds. [30 marks]
 - (b) Test the convergence of the following using an appropriate test:

(i)
$$\int_0^\infty \frac{1}{x^p} \ dx;$$

(ii)
$$\int_0^\infty \frac{\cos x}{1+x^2} \, dx.$$

[50 marks]

(c) Find the values of m and n for which the following integral converges.

$$\int_0^1 e^{-mx} x^n \ dx.$$

[20 marks]

(a) What is meant by uniform convergence of a sequence of function $\{f_n\}_{n\in\mathbb{N}}$ Show that the sequence $\{f_n\}$ defined by

$$f_n(x) = x^n$$

on [0,1] converges for every $x \in [0,1]$. Does it converge uniformly? Justify answer. 35 m

(b) Comment on the following statement with suitable example.

"Every pointwise convergent sequence of functions is uniformly converge

30 ma

(c) Read the following statement carefully.

Suppose $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of functions defined on a metric space X $\lim_{n \to \infty} f_n(x) = f(x) \ \forall x \in X$, then $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly to f if only if $M_n \to 0$ as $n \to \infty$, where $M_n = \sup\{|f_n(x) - f(x)| : x \in X\}$

Using the above result, show that the sequence $\{f_n\}_{n\in\mathbb{N}}$, where

$$f_n(x) = nx(1-x)^n$$

does not converge uniformly on [0,1].

- Q4. (a) What is meant by a series of real-valued functions converges uniformly $E \subseteq \mathbb{R}$. 10m
 - (b) Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of real valued functions defined on $\mathbb{E}\subseteq\mathbb{R}$. Support that for each $n \in \mathbb{N}$, there is a constant M_n such that $|f_n(x)| \leq M_n$, $\forall x \in \mathbb{N}$ where $\sum_{n=1}^{\infty} M_n$ converges. Prove that $\sum_{n=1}^{\infty} f_n$ converges uniformly on E.

Hence, show that the series

$$\cos x + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + \cdots$$

converges uniformly on \mathbb{R} .

40m

(c) State Abel's test and show that the series of functions

$$\sum_{k=1}^{\infty} \frac{\cos kx}{k^3}$$

uniformly converges on \mathbb{R} .