# EASTERN UNIVERSITY, SRI LANKA <br> (MARCH/APRIL 2008) <br> PH 205 RELATIVITY 

Time: 01 hour.
Answer ALL Questions

1. Given two frames $S$ and $S^{\prime}$, where frame $S^{\prime}$ is moving at uniform velocity $V$ in the positive $X X^{\prime}$ direction relative to frame $S$. A particle in frame $S$ has velocity $U=\left\{U_{x}, U_{y}, U_{z}\right\}$. Using appropriate Lorentz transformations, show that the velocity components of the particle in frame $S^{\prime}$ are given by,

$$
U_{x}^{\prime}=\frac{U_{x}-V}{\left(1-\frac{V U_{x}}{c^{2}}\right)}, \quad U_{y}^{\prime}=\frac{U_{y}}{\gamma\left(1-\frac{V U_{x}}{c^{2}}\right)}, \quad U_{z}^{\prime}=\frac{U_{z}}{\gamma\left(1-\frac{V U_{x}}{c^{2}}\right)}
$$

Then show that, $U_{x}=\frac{U_{x}^{\prime}+V}{\left(1+\frac{V U x}{c^{2}}\right)}$.
where the symbols have their usual meanings.

A space ship is launched from earth and maintains a uniform velocity of 0.9 c in the horizontal direction where c is the velocity of the light which equals to $3 \times 10^{8} \mathrm{~ms}^{-1}$. The space ship subsequently launches a small rocket in the forward direction with the speed of $0.9 c$ relative to the space ship. What is the speed of the small rocket relative to the Earth?
2. Write down the expression for the relativistic mass and relativistic momentum of a particle with clear symbolic definition.
i. Show that the Energy-Momentum equation of a particle is given by,

$$
E^{2}-p^{2} c^{2}=m_{0}{ }^{2} c^{4} .
$$

ii. Show that the quantity $E^{2}-p^{2} c^{2}$ is invariant.
iii. A particle of rest mass $m_{0}$ is traveling, so that its total energy is just twice of its rest mass energy. It collides with a new particle. Show that the rest mass of the new particle is $\sqrt{6} m_{0}$.

