EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE (SECOND SEMESTER) SPECIAL-REPEAT 2004/2005 CH 306: SURFACE CHEMISTRY AND MOLECULAR SPECTROSCOPY

TIME: 01 HOUR

- 1. (a) Write the B.E.T equation and identify the terms in it.
 - (b) Arrange the B.E.T equation in (a) into linear form and express the slope and intercept of the plot $\frac{p}{\nu(p^0 p)}$ vs $\frac{p}{p^0}$.

6

- c) Express the constant 'c' in terms of ΔH_L (heat of liquefaction) and ΔH_1 (heat of adsorption of first layer)
- d) B.E.T plot of $\frac{p}{\nu(p^0 p)}$ vs $\frac{p}{p^0}$ for the adsorption of N₂ (g) at 90.1 K on certain solid yields a slope of 0.0173 cm⁻³ and intercept of 1.5 x 10⁻⁴ cm⁻³. Determine the following:
 - i) The constant 'c'
 - ii) The volume of mono layer formation (V_m)
 - iii) The surface area of the solid in square meters (m^2) when the area of the nitrogen molecule is $1.62 \times 10^{-19} \text{ m}^2$.
 - iv) $\Delta H_L \Delta H_1$
- 2. (a) i) What type of molecules show rotational spectra?
 - ii) State which of the following molecules show rotational spectra: H₂, HCl, CH₄, CH₃Cl and CO.
 - iii) The first rotational line (J = 0 to J = 1) of CO molecule occurs at 3.842 cm⁻¹ Calculate the moment inertia and the inter nuclear distance of the ∞ CO molecule.
 - (b) The absorption of infra red radiation of the above molecule shows an absorption band at 2100 cm⁻¹. Calculate the fundamental frequency of vibration and the force constant of the C O bond (Assume the vibration is simple harmonic)

[$\mu_{co} = 1.138 \times 10^{-26} kg$, h = 6.62 x 10⁻³⁴Js and C = 3x10⁸ ms⁻¹]