EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE - 2005/2006 FIRST SEMESTER (A.ug./Sep.,2007) MT 306 - PROBABILITY THEORY (Proper \& Repeat)

Q1. (a) i. State and prove the Baye's theorem.
ii. In a certain coilege, 4% of the men and 1% of the wormen are taller than 1.8 m . Furthermore 60% of the students are women. If a student selected at random is taller than 1.8 m , what is the probability that the student is a woman?
(b) A random variable X has Poisson distribution with parameter λ given by

$$
P[X=x]=\frac{e^{-\lambda} \lambda^{x}}{x!} .
$$

Find the mean, variance and the moment generating function of X.
(c) The mean number of bacteria per milliliter of a liquid is known to be 4 . Assuming that the number of bacteria follows a Poisson distribution, find the probability that
i. in 1 ml of liquid there will be no bacteria,
ii. in 3 ml of liquid there will be less than two bacteria,
iii. in $\frac{1}{2} \mathrm{ml}$ of liquid there will be more than two bacteria.

Q2. (a) If X is a random variable with density function f_{X} and $g(x)$ is a monotonic increasing and differentiable function from \mathbb{R} to \mathbb{R}, show that $Y=g(X)$ the density function

$$
f_{Y}(y)=f_{X}\left[g^{-1}(y)\right] \frac{d}{d y}\left[g^{-1}(y)\right], \quad y \in \mathbb{R}
$$

(b) Let X be a random variable with exponential distribution with parameter Find the density function of
i. $2 X+5$,
ii. $(1+X)^{-1}$.
(c) Random variable X and Y have joint density function

$$
f_{X Y}(x, y)=\left\{\begin{array}{cc}
k\left(x^{3}+1\right) y & \text { if } 0<x<1,0<y<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find
i. the value of k,
ii. marginal density functions of X and Y,
iii. $E(X Y$),
iv. Are X and Y independent?
3. (a) Define the Moment Generating Function of a random variable X.

Find the moment generating function of the Gamma uiou..
-ivan by

$$
f(x)=\left\{\begin{array}{cl}
\frac{\lambda^{n} x^{n-1} e^{-\lambda x}}{\Gamma(n)} ; & x \geqslant 0 \\
0 ; & \text { otherwise. }
\end{array}\right.
$$

Hence find the mean and variance.
(b) i. Define the following terms:

* Unbiased estimator,
*Risk function.
ii. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a normal distribution with mean μ and variance σ^{2}. Determine c such that $c\left[\left(X_{1}-X_{2}\right)^{2}+\left(X_{3}-\right.\right.$ $\left.\left.X_{4}\right)^{2}+\left(X_{5}-X_{6}\right)^{2}\right]$ is an unbiased estimator for σ^{2}.
iii. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from Poisson distribution with parameter λ. Let $T_{1}=\frac{X_{i}+X_{j}}{2}$ and $T_{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ where $1 \leqslant i \leqslant n, 1 \leqslant$ $j \leqslant n$. Show that T_{1} and T_{2} are unbiased estimator for λ and find the best estimator for λ.

Q4. (a) Define the maximum likelihood estimator.

Determine the maximum likelihood estimators of the parameters of the following distributions:
i. Exponential distribution with parameter θ,
ii. Normal distribution with mean μ and variance σ^{2}.
(b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be n a random sample from a normal distribution with unknown mean μ and known variance σ^{2}. Find $100(1-\alpha) \%$ confidence interval for μ.
(c) On the basis of results obtained from a random sample of 100 men from a particular district, the 95% confidence interval for the mean height of the men in the district is found to be $(177.22 \mathrm{~cm}, 179.18 \mathrm{~cm})$. Find the value of \bar{X}, the mean of the sample, and σ^{2}, the standard deviation of the normal population from which the sample is drawn. Calculate the 98% confidence interval for the mean height.

