EASTERN UNIVERSITY, SRI LANKA.

SPECIAL DEGREE EXAMINATION

IN MATHEMATICS, $\left(2004 / 2005{ }^{\circ}\right)$
(MARCH/APRIL, 2007)

PART II

MT 405 - NUMERICAL THEORY OF ORDINARY DIFFERENTIAL EQUATIONS

Answer all Questions

1. (a) Let $\left(x_{n}\right)$ be a sequence of real numbers satisfying

$$
x_{n+1} \leq \frac{1}{1-A}\left(x_{n}+A B\right), \quad n=0,1,2, \cdots,
$$

where $0 \leq A<1$ and $B \geq 0$. Prove that

$$
x_{n} \leq \frac{1}{(1-A)^{n}} x_{0}+\left[\frac{1}{(1-A)^{n}}-1\right] B, \quad n=0,1,2, \cdots
$$

and deduce that

$$
x_{n} \leq e^{n a} x_{0}+\left(e^{n a}-1\right) B, \quad a=\frac{A}{1-A}, \quad n=0, \ldots, 2, \cdots
$$

(b) Let y be the continuous solution of an m-dimensional system

$$
y^{\prime}(x)=f(y(x)), \quad y(0)=\nu
$$

where for some norm

$$
\|f(u)-f(v)\| \leq L\|u-v\| \quad \text { and }\|f(u)\| \leq M
$$

for all $u, v \in \mathbb{R}^{m}$. Use the identity

$$
y(x+h)-y(x)-h y^{\prime}(x+h)=h \int_{0}^{1}\left[y^{\prime}(x+h t)-y^{\prime}(x+h)\right] d t
$$

to show that, for any x and h,

$$
\left\|y(x+h)-y(x)-h y^{\prime}(x+h)\right\| \leq \frac{h^{2}}{2} L M .
$$

(c) For given y_{0}, let $y_{1}, y_{2}, \cdots, y_{N}$ be given by the implicit Euler method

$$
y_{n+1}=y_{n}+h f\left(y_{n+1}\right), \quad n=0,1, \cdots, N-1,
$$

where h is chosen so that $h N=1$.
Show that, for $h L<1$,
$\left\|y(1)-y_{N}\right\| \leq e^{\frac{L}{1-h L}}\left\|y(0)-y_{0}\right\|+\frac{h}{2}\left(e^{\frac{L}{1-h L}}-1\right) M$
and comment briefly on this result.
2. (a) Define the following terms:
i. Convergence,
ii. Consistency,
iii. Zero Stability,
applied to the linear multi-step method

$$
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{h} \beta_{j} f_{n+j}, \quad \alpha_{k}=1
$$

used for solving initial value problem of the form

$$
y^{\prime}=f(x, y), \quad a \leq x \leq b, \quad y(a)=\nu
$$

where $y:[a, b] \longrightarrow \mathbb{R}^{m}$ and $f:[a, b] \times \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$.
What is the relation between these terms ?
Prove that if a linear multi-step method is convergent, then it is zero-stable .
(b) Find the range of values of α for which the linear 3 -step method

$$
y_{n+3}+\alpha\left(y_{n+2}-y_{n}\right)-y_{n+1}=\frac{1}{2}(3+\alpha) h\left(f_{n+2}+f_{n+1}\right)
$$

is zero stable. Show that this method is not convergent for these values of α.
3. (a) i. Define the order of the linear multi-step method in terms of the " associated linear operator.
ii. Determine the linear 2-step method of maximum order.
(b) i. Show that a linear multi-step method with characteristic polynomials ρ and σ is of order p if and only if

$$
\begin{gathered}
\rho(z)-(\ln z) \sigma(z)=c_{p+1}(z-1)^{p+1}+c_{p+2}(z-1)^{p+2}+\cdots, \\
|z-1|<1, \text { with } c_{p+1} \neq 0 .
\end{gathered}
$$

ii. A linear multi-step method with characteristic polynornial

$$
p(z)=z^{2}-\frac{3}{2} z+\frac{1}{2}
$$

is of maximum order. Find the method and the error constant. Explain why the method is convergent.
4. (a) Define the term "absolute stability" as applied to a ntmerical method used for solving initial value problems for ordinary differential equations.
(b) A linear multi-step method has characteristic polynomials ρ and σ. Show that the method is absolutely stable for given $z \in \mathbb{C}$ if and only if the zeros of $\rho(r)-z \sigma(r)$ are of modulus at most ore, with zeros of modulus one being simple.
(c) The explicit Euler method is used as predictor and the Trapezoida: rule is used as corrector in the PEC mode. Show that the combined method is absolutely stable for given $z \in \mathbb{C}$ if the roots of $r^{2}-\left(1+\frac{3 z}{2}\right) r+\frac{1}{2} z$ are of modulus at most one with roots of niodulus one being simple. Show that the method is absolutely stable for real $z \in[-1,0]$.

5. (a) i. The coefficient of an s-stage Runge-Kutta method are given by the array

C	A
	b^{T}

Show that the method is absolutely stable for given z
if $\operatorname{det}(I-z A) \neq 0$ and $|R(z)| \leq 1$, where

$$
R(z)=1+z b^{T}(I-z A)^{-1} e .
$$

ii. Deduce that, for an explicit method, $R(z)$ is a. polynomial of degree s and hence prove that all explicit s-stage Rurge-Kutta methods of order s have identical regions of absolute ste.bility
(b) Show that the 3 -stage Runge-Kutta method with coefficients

0	0	0	0
$2 / 3$	$2 / 3$	0	0
$2 / 3$	0	$2 / 3$	0
	$1 / 4$	$1 / 6$	$7 / 12$

is of order 2 and that the interval of absolute stability is $-3,0]$.
6. (a) i. Define the term "B-stability" as applied to an i-stage RungeKutta method given by the array

C	A
	b^{T}

ii. Let $B=\operatorname{diag}\left(b_{1}, b_{2}, \cdots, b_{j}\right)$ and

$$
Q=B A^{-1}+A^{-T} B-A^{-T} b b^{T} A^{-1} .
$$

Prove that if B and Q are non-negative definite, then the RungeKutta method is B-stable .
(b) i. Define what is meant by the statement that a. Rurge-Kutta method is algebraically stable. State the relationship, between B-stability and algebraic stability .
ii. Prove that the one parameter family of semi-irnplicit methods

* given by the array

is algebraically stable for all $\alpha>0$.

