EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE - 2007/2008
FIRST SEMESTER(Dec./Jan., 2008/2009)

MT 306 - PROBABILITY THEORY PROPER AND REPEAT

(a) Define the term "conditional probability".

Let A, B and C be three events such that $P(C)>0$. Prove that
i. $P\left(A^{c} \mid C\right)=1-P(A \mid C)$,
ii. $P[(A \cup B) \mid C]=P(A \mid C)+P(B \mid C)-P[(A \cap B) \mid C]$.
(b) Let X have a geometric distribution with parameter p.
i. Prove that $P[X \leq n]=1-q^{n}$, where n is a positive integer and $q=p-1$.

Hence deduce that $P[X>n]=q^{n}$.
ii. Show that for any positive integers m and n,

$$
P[X>m+n \mid X>m]=P[X>n]
$$

(c) A coin is biased, so that the probability of obtaining a head is 0.6 . If X is the number of tosses up to and including the first head, find the following:
i. $P[X \leq 4]$,
ii. $P[X>5]$,
iii. the probability that more 8 tosses will be required to obtain a head given that more than 5 tosses are required.
2. Define the term "Moment generating function" of a random variable X.
(a) Show that if X and Y are independent random variables, then $X+Y$ has the moment generating function,

$$
M_{X+Y}(t)=M_{X}(t) M_{Y}(t),
$$

where M_{X} and M_{Y} are moment generating functions of X and Y, respectively and t is a real variable.
(b) The probability density function of a Gamma distribution with parameters m and λ is given by

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{\lambda^{m} x^{m-1} e^{-\lambda x}}{\Gamma(m)} & \text { if } x>0 \\
0 & \text { otherwise. }
\end{array}\right.
$$

Let X and Y be independent random variables; X having the gamma distribution with parameters m and λ and Y having the gamma distribution with parameters s and λ. Show that $X+Y$ has the gamma distribution with parameters $m+s$ and λ.
(c) Show that the ψ^{2} distribution with n degrees of freedom has moment generating function

$$
M(t)=(1-2 t)^{-n / 2}, \quad \text { if } t<\frac{1}{2}
$$

by using the result of (b).
(d) The random variable X follows the normal distribution with mean 0 and variance 1. Find the moment generating function of X^{2}.

Deduce that, if $X_{1}, X_{2}, \cdots, X_{n}$ are independent random variables having the normal distribution with mean 0 and variance 1, then $U=X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}$ has a ψ^{2} distribution with n degrees of freedom.
(a) If X is a continuous random variable with density function f_{X} and g is monotonically increasing and differentiable function from \mathbb{R} into \mathbb{R}, show that $Y=g(X)$ has the density function

$$
f_{Y}(y)=f_{X}\left[g^{-1}(y)\right] \frac{d}{d y}\left[g^{-1}(y)\right], \quad y \in \mathbb{R}
$$

If the probability density function of a random variable X is given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{k x^{3}}{(1+2 x)^{6}} & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

where k is a constant. Find the probability density function of the random variable $Y=\frac{2 X}{1+2 X}$.
(b) Let the random variables X and Y have the joint probability density function

$$
f_{X Y}(x, y)=\left\{\begin{array}{cl}
e^{-x-y} & \text { if } x, y>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

and let $U=X+Y$ and $V=\frac{X}{X+Y}$.
i. Find the joint probability density function of U and V.
ii. Are U and V independent random variables?
(a) Let $X_{1}, X_{2}, \cdots, X_{n}$ be the random samples from the normal distribution with mean 0 and variance σ^{2}. Find the maximum likelihood estimators of μ and σ^{2}.
(b) Let $X_{1}, X_{2}, \cdots, X_{n}$ be the random samples from the normal distribution with mean 0 and variance $\theta, 0<\theta<\infty$. Show that

$$
T=\frac{\sum_{i=1}^{n} X_{i}^{2}}{n}
$$

is an unbiased estimator for θ. Also show that, by the Crammer-Rao inequality, $V(T) \geq \frac{2 \theta^{2}}{n}$, where $V(T)$ is variance of T.
(c) The sample mean and sample variance of 6 observations from the first population are 35 and 42 respectively and those of 10 observations from the second population are 40 and 28 respectively. Construct the 90% confidence interval for the difference of sample mean $\mu_{1}-\mu_{2}$.

