EASTERN UNIVERSITY, SRI LANKA

SPECIAL DEGREE EXAMINATION

IN MATHEMATICS, (2004/2005)

(MARCH/APRIL, 2007)

PART II

Iversity, Sri Lonka MT410 - NUMERICAL LINEAR ALGEBRA

Answer all Questions

Time allowed: Three hours

LIBRARY

- (a) Define the term "positive definite" as applied to an $n \times n$ Hermitian 1. matrix.
 - (b) Prove that a Hermitian positive definite matrix A can be uniquely expressed as A = LU, where L is a unit lower-triangular matrix and U is an upper-triangular matrix.
 - (c) Show that a Hermitian matrix A is positive definite if and only if $A = GG^{H}$, where G is a non-singular lower-triangular matrix. Determine G such that

$$GG^{H} = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

(a) An $n \times n$ elementary Hermitian matrix $H(\omega)$ is of the form 2.

$$H(\omega) = I - 2\omega\omega^{H}, \quad \omega^{H}\omega = 1 \quad \text{or } \omega = 0,$$

where ω is an *n*- column vector and $\omega^H = \overline{\omega}^T$. Show that

 $[H(\omega)]^{-1} = H(\omega)$

and that any product of elementary Hermitian matrices of the same order is unitary.

(b) Show that, for any x ∈ ℝⁿ, there is an n × n real elementary Hermitian matrix H(ω) such that H(ω)x = ce₁ where c² = x^Tx and e₁ = (1,0,0,...,0)^T ∈ ℝⁿ.
Explain the optimal choice of the sign of c for the computation of

ω.

(c) Find an upper triangular matrix U such that HA = U, where H is a product of elementary Hermitian matrices and

$$A = \begin{bmatrix} 1 & 6 & -1 \\ 2 & 2 & 3 \\ 2 & 1 & 2 \end{bmatrix},$$

making the optimal choice of sign in each stage of the process. Hence solve $Ax = e_1$, where $e_1 = (1, 0, 0)^T$.

- (a) Define the phrase "strictly diagonally dominant" as applied to an n × n matrix.
 - (b) Let A = I L U be an strictly diagonally dominant, where I is the n × n identity matrix, L a strictly lower-triangular matrix and U a strictly upper-triangular matrix. Prove that, for arbitrary x⁽⁰⁾, the sequence of vectors {x^(r)} defined by

$$x^{(r+1)} = (I-L)^{-1}[Ux^{(r)}+b], \quad r=0,1,2,\cdots,$$

converge to x, where Ax = b. Prove also that, for some corresponding vector and matrix norms,

$$||x^{(r+1)} - x|| \le \frac{||(I-L)^{-1}U||}{1 - ||(I-L)^{-1}U||} ||x^{(r+1)} - x^{(r)}||, \quad r = 0, 1, 2, \cdots$$

(c) The following equations are to be solved by Gauss-Seidal iteration:

Starting with $x^{(0)} = 0$, obtain $x^{(1)}$, $x^{(2)}$ and bound for $||x - x^{(2)}||_{\infty}$.

4. (a) Define the terms "Upper Hessenberg" and "Tridiagonal" as applied to an $n \times n$ matrix A.

Show that there exists a unitary matrix S, a product of elementary Hermitian matrices, such that $S^H A S$ is an upper Hessenberg matrix.

(b) Determine a tridiagonal matrix T such that $S^H A S = T$, where S is unitary and

	1	0	4	0
4	0	3	3	4
<i>A</i> –	4	3	3	4
	0	4	4	-3

Choose an appropriate sign for the construction of each elementary Hermitian matrix needed.

5. (a) Let A be an n × n Hermitian positive definite matrix with eigenvectors u_i corresponding eigenvalues λ_i that satisfy '
 λ₁ > λ₂ > · · · > λ_n > 0.

Let

$$\sigma_r x^{(r+1)} = A x^{(r)}, \quad r = 0, 1, 2, \cdots,$$
(1)

where σ_r is a component of $Ax^{(r)}$ of largest modulus. Given that $x^0 = \alpha_1 u_1 + \alpha_2 u_2 \cdots + \alpha_n u_n$ with $\alpha_1 \neq 0$, show that the sequence $\{x^{(r)}\}$ converges to the subspace spanned by u_1 and that the sequence $\{|\sigma_r|\}$ converges to λ_1 .

(b) Let

$$\beta_r = \frac{\sigma_r x^{(r)H} x^{(r+1)}}{x^{(r)H} x^{(r)}}, \quad r = 0, 1, 2, \cdots$$

Show that $\{\beta_r\}$ converges to λ_1 .

(c) Starting with $x^{(0)} = (1, 1, 0)^T$, obtain $x^{(1)}$, $x^{(2)}$, $x^{(3)}$ by applying (1) to the matrix

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix}.$$

Hence calculate β_2 .

- 5. (a) Suppose that the eigenvalue λ₁ of largest modulus and corresponding eigenvector z₁ of an n×n matrix A have been computed by the Power method.
 - i. Show that there is a non-singular matrix S, a product of an elementary permutation matrix and elementary lower triangular matrix, such that

$$A = S \left[\frac{\lambda_1 \mid \gamma^T}{0 \mid B} \right] S^{-1},$$

where B is an $(n-1) \times (n-1)$ matrix and γ is an (n-1)-column vector.

- Describe how the other eigenvalues and eigenvectors of A could be computed
- (b) It is given that the matrix

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

has an eigenvalue close to 3.4 and a corresponding eigenvector approximately $(0.7, 1, 0.3)^T$. Obtain 2×2 matrix *B* whose eigenvalues approximate the other eigenvalues of *A*.