EASTERN UNIVERSITY, SRI LANKA SPECIAL DEGREE EXAMINATION IN MATHEMATICS (2004/2005)

MARCH/APRIL, 2007

PART I

MT 412 - FUNCTIONS OF SEVERAL VARIABLES AND APPLICATIONS

Time: 3 Hours

Maximum Marks: 600

Answer ALL Questions

- I. (a) Suppose $f = (f_t, ..., f_m): D \to \mathbb{R}^m$ and that a is a limit of D and $b = (b_1, ..., b_m) \in \mathbb{R}^m$. Prove that $\lim_{x \to a} f(x) = b$ if and only if $\lim_{x \to a} f_i(x) = b_i$, i = 1,, m.
 - (b) Let $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ and let x_0 be in A or a boundary point of A. Show that $\lim_{n \to \infty} f(x) = b$ if and only if, for every number $\varepsilon \ge 0$, there is a $\delta \ge 0$ such that, for $x \in A$ satisfying $0 \le ||x - x_0|| \le \delta$, we have $\|f(x) - b\| < \varepsilon$.
 - (c) Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be open. Let $g: U \subset \mathbb{R}^n \to \mathbb{R}^m$ and $f: V \subset \mathbb{R}^m \to \mathbb{R}^p$ be given functions such that g maps U into V so that $f \circ g$ is defined. Suppose g is differentiable at x_0 and f at $y_0 = g(x_0)$. Then prove that $f \circ g$ is differentiable at x_0 and that $D(f \circ g)(x_0) = Df(y_0) Dg(x_0)$.

(d) Let
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
.

Is f differentiable at (0,0)? Prove your assertion.

[20 + 20 + 30 + 30 = 100]

- II. (a) If f: $\mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x_0 , prove that the directional derivative $D_r f(x_0)$ exists for all $r \in \mathbb{R}^n$ and $D_r f(x_0) = d f_{x_0}(h)$.
 - (b) Prove that if f is continuously differentiable at x_0 , then f is differentiable at x_0 .
 - (c) Let f: $\mathbb{R}^3 \to \mathbb{R}^4$ be defined by $f(x_1, x_2) = (x_2, x_1, x_1x_2, x_2^2 x_1^2)$. Let a = (1, 2). Determine the tangent plane to the image S of f at the point f(a).
 - (d) Let f be a real-valued function, defined on the open set U in Rⁿ. If the first and second partial derivatives of f exist and are continuous in U, prove that $D_iD_if = D_iD_if$ on U.

[15 + 25 + 40 + 20 = 100]

III. (a) Let f: $U \subset \mathbb{R}^n \to \mathbb{R}$ have continuous partial derivatives of third order. Show that

$$f(x_0 + h) = f(x_0) + \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x_0) + \frac{1}{2} \sum_{i,j=1}^{n} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) + R_2(h, x_0) \text{ where}$$

$$R_2(h, x_0) / \|h\|^2 \to 0 \text{ as } h \to 0.$$

- (b) The graph of the function g(x,y) = 1/xy is a surface S in \mathbb{R}^2 . find the points of S that are closest to the origin (0,0,0).
- (c) Find the rectangle box with volume 1000 having the least total surface area. [25 + 35 + 40 = 100]

- IV. (a) Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a \mathbb{C}^1 mapping where U is a neighborhood of the line segment L with end points a and b. Prove that $|f(b) - f(a)|_0 \le |b - a|_0 \max ||f'(x)||$.
 - (b) Suppose that the mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ is \mathbb{C}^{\perp} in a neighborhood W of the point a, with the matrix f'(a) being nonsingular. Prove that f is locally invertible – i.e., there exist neighborhoods U⊂ W of a and V of b = f(a), and a one-to-one C mapping g: V \rightarrow W such that g(f(x)) = x for $x \in U$ and f(g(y)) = y for $y \in V$; and, in particular, prove that the local inverse g is the limit of the sequence $\{g_k\}_{k=0}^{\infty}$ of successive approximations, defined inductively by $g_0(y) = a, \; g_{k+1}(y) = g_k(y) - f'(a)^{-1}[f(g_k(y)) - y] \; \text{for} \; y \in V.$
 - (c) Let the C $^{+}$ mapping f: $R_{uv}^{2} \rightarrow R_{xv}^{2}$ be defined by the equations $x = u + (v + 2)^2 + 1$ $y = (u - 1)^2 + y + 1$.
 - Let a = (1,-2). Is f invertible near a? If so, find a local inverse of f. [25 + 35 + 40 = 100]
- V. (a) State the General Implicit Mapping Theorem.
 - Solve $x^2 + \frac{1}{2}y^2 + z^3 z^2 \frac{3}{2} = 0$ $x^3 + y^3 3y + z + 3 = 0$ for y and z as functions of x in a neighborhood of (-1,1,0).
 - (b) Prove that every admissible function is integrable.
 - (c) Let $f: \mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ be an integrable function such that, for each $x \in \mathbb{R}^m$, the function $f_x : \mathbb{R}^n \to \mathbb{R}$, defined by $f_x(y) = f(x,y)$, is integrable. Given the contented sets $A \subset \mathbb{R}^m$ and $B \subset \mathbb{R}^n$, let $F: \mathbb{R}^m \to \mathbb{R}$ be defined by $F(x) = \int_B f_x = \int_B f(x, y) dy$. Then prove that F is integrable, and $\int_{A \times B} f = \int_{A} F = \int_{A} \left(\int_{B} f(x, y) dy \right) dx.$
 - (d) Find the mass of the ellipsoidal ball $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$ with the uniform density of unity.
- VI. (a) If f is a real-valued C^{-1} function on the open set $U \subset R^n$ and $\gamma:[a,b] \to U$ is a C^{-1} path, prove that $\int\! df = f(\gamma(b)) - f(\gamma(a)).$
 - (b) If α is a \mathbb{C}^{\perp} differential k-form on an open subset of \mathbb{R}^n , prove that $d(d\alpha) = 0$.
 - (c) If $\varphi: \mathbb{R}^m \to \mathbb{R}^n$ is a \mathbb{C}^1 mapping and α is a \mathbb{C}^1 differential k-form, show that $d(\varphi^*\alpha) = \varphi^*(d\alpha)$.
 - (d) Let $Q = [0,1] \times [0,1] \subset \mathbb{R}^2$ and suppose $\varphi: Q \to \mathbb{R}^3$ is defined by the equations x = u + vy = u - vz = uv.

Then compute the surface integral $\int_{\varphi} x dy \wedge dz + y dx \wedge dz = \int_{\varphi} \alpha$ in two different methods you [20 + 20 + 30 + 30 = 100]are aware of.