

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE - 2009/2010

FIRST SEMESTER (June/July, 2011)

MT106 - TENSOR ANALYSIS (REPEAT)

Answer all questions

Time: One hour

- 1. (a) Write the transformation equation for the following tensors:
 - i. A_{qr}^{ms} ;
 - ii. B_{mn}^{pqr} ;
 - iii. C_{ijk} .
 - (b) Define the terms symmetric and skew-symmetric tensors.
 - i. If $ds^2 = g_{ij} dx^i dx^j$ is an invariant, then show that g_{ij} is a symmetric covariant tensor of rank two.
 - ii. If A^{pq} and B_{rs} are skew-symmetric tensors, then show that $C^{pq}_{rs} = A^{pq}B_{rs}$ is a symmetric tensor.
 - (c) The covariant components of a tensor in rectangular co-ordinate system are yz, 3, 2x+y. Find its covariant components in cylindrical co-ordinates (ρ, ϕ, z) .

- 2. (a) Define the Christoffel's symbols of the first and second kind.
 - (b) Determine the Christoffel's symbols of the second kind for the line element given by

$$ds^{2} = dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta \,d\phi^{2}.$$

(c) With the usual notations, prove the following:

i.
$$\frac{\partial g_{pq}}{\partial x^m} = [pm, q] + [qm, p];$$

ii.
$$\frac{\partial g^{pq}}{\partial x^m} = -g^{pn}\Gamma^q_{mn} - g^{qn}\Gamma^p_{mn};$$

iii.
$$\frac{1}{2g} \frac{\partial g}{\partial x^m} = \Gamma_{jm}^{j^*}.$$