EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE - 2009/2010

FIRST SEMESTER (PROPER/REPEAT)

(June 2011)

PH 101 MECHANICS I

Time: 01 hour.
Answer ALL Questions

1. (a) Distinguish between average velocity and instantaneous velocity. Under what condition is the average velocity equal to instantaneous velocity.

A particle located at position $x=0$ at time $t=0$ starts moving along the positive x-direction with a velocity v that varies as $v=k \sqrt{x}$. How do the displacement, velocity and acceleration of the particle vary with time t ? What is the average velocity of the particle if it moves to a distance d in time t from rest?
(b) A particle is moving in two dimensions and its position is given by the polar coordinates (r, θ). Show that the velocity v and the acceleration a of the particle are given by:

$$
\begin{gathered}
v=\dot{r} e_{r}+r \dot{\theta} e_{\theta} \\
a=\left(\ddot{r}-r \dot{\theta}^{2}\right) e_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) e_{\theta}
\end{gathered}
$$

where e_{r} and e_{θ} are the unit vectors along and perpendicular to the radial direction respectively.
2. Explain briefly what you mean by Kinetic energy, Potential energy, Work done, Work-Energy principal and Conservative force.
A particle with unit mass which is initially at rest, moves under the action of a force:

$$
F=\left[\left(3 t^{2}+1\right) \vec{\imath}+(2 t+3) \vec{\jmath}+4 \vec{k}\right] N \text { where } t \text { is in sec. }
$$

i. Express the Newton's second law of motion and write down its mathematical representation.
ii. Find the acceleration of the particle in terms of time t.
iii. Find the velocity of the particle at time $t=1$ and $t=2$.
iv. Determine the work done by the force when the particle moves from one point to another, in a time interval $t=1$ and $t=2$.
v. Find the kinetic energy of the particle at time $t=1$ and $t=2$.
vi. Verify the Work-energy theorem using your results for the previous parts.

