

# EASTERN UNIVERSITY, SRI LANKA <br> THIRD EXAMINATION IN SCIENCE - 2004/2005 SECOND SEMESTER(Dec.,2008/Jan.,2009) <br> MT 307 - CLASSICAL MECHANICS III (SPECIAL REPEAT) 

Q1. (a) With the usual notation, for a rotating system of axis, prove that

$$
\frac{d^{2} \underline{r}}{d t^{2}}=\frac{\partial^{2} \underline{r}}{\partial t^{2}}+\frac{\partial \underline{w}}{\partial t} \wedge \underline{r}+2 \underline{w} \wedge \frac{\partial \underline{r}}{\partial t}+\underline{\omega} \wedge(\underline{\omega} \wedge \underline{r})
$$

(b) If a particle of mass $m$ is projected vertically upward with velocity $v$ and latitude $\lambda$, show that after time $T$ it will strike the earth at a distance

$$
\frac{4 w v^{3}}{3 g^{2}} \cos \lambda,
$$

where $\omega$ is the angular velocity of the earth and $g$ is the gravitational acceleration, along westward direction from its starting point.

Q2. (a) State the linear momentum principle.
With the usual notation, show that

$$
\sum_{i=1}^{n}\left(\underline{r}_{i}-\underline{r}_{A}\right) \wedge \underline{F}_{i}=\left(\underline{r}_{G}-\underline{r}_{A}\right) \wedge M \underline{f}_{G}+\frac{d \underline{H}_{G}}{d t}
$$

(b) A solid of mass $M$ is in the form of a tetrahedron $O X Y Z$, the edges $O X, O Y$ and $O Z$ of which are mutually perpendicular, rests with $X O Y$ on a fixed smooth horizontal plane and $Y O Z$ against a smooth vertical wall. The normal
to the rough face $X Y Z$ is in the direction of a unit vector $\underline{n}$. A heavy unifa sphere of mass $m$ and center $C$ rolls down the face causing the tetrahedron acquire a velocity $-V \underline{j}$, where $j$ is the unit vector along $O Y$. If $\overrightarrow{O C}=\underline{r}, \mathrm{pm}$ that

$$
(M+m) V-m \dot{\underline{r}} \cdot \underline{j}=l
$$

where $l$ is a constant, and

$$
\frac{7}{5} \ddot{\underline{r}}=\underline{f}-\underline{n}(\underline{n} \cdot \underline{f}),
$$

where $\underline{f}=\underline{g}+\dot{V} \underline{j}$ and $g$ is the gravitational acceleration.
Q3. (a) Derive Euler's equations of motion of a rigid body with one point fixed.
(b) A solid consist of two uniform right circular cones which are rigidly joined the vertex $O$ such that their axis in the same straight line with the vert angle $\frac{\pi}{2}$. The height of each cone is $b$. If $O$ is fixed and the solid is set rotate about a common generator of the cone with angular velocity $\omega$, under forces except gravity and reaction at $O$, show that the solid will rotate abo the same generator after a time $\frac{10 \sqrt{2} \pi}{3 \omega}$.
Q4. (a) Write down the equation of D'Alembert's principle and virtual work. Herr obtain Lagrange's equation for a Holonomic system.
(b) Find differential equations of motion for a spherical pendulum of length $l$.

Q5. (a) A uniform rod $A B$ of length $2 l$ and mass $m$ has a particle of mass $M$ attactur to the end $B$. The system is at rest on a smooth horizontal table. An impui $I$ is applied to $A$ in a direction perpendicular to $A B$ in the plane of the tab Find the initial velocities of $A$ and $B$ and prove that the resulting kinetic eners is

$$
\frac{2 I^{2}(m+3 M)}{m(m+4 M)}
$$

(b) If $f$ and $g$ of dynamical variables $\vec{p}, \vec{q}$ and time $t$ are constant functions, pror that it's Poisson bracket is also constant of the motion.

Q6. Consider a system consists of two identical simple pendula each of mass $m$, length and coupled by a massless spring of force constant $k$. They move in a vertical plan and the two pendula are identical in an equilibrium position. If a small horizonte oscillation about the potion of equilibrium is concerned, then
(a) find Lagrangian function and
(b) show that the horizontal displacements of the pendula are given by

$$
\alpha e^{i t \omega_{0}}+\beta e^{i t \sqrt{\omega_{0}^{2}+2 \omega_{s}^{2}}} \text { and } \alpha e^{i t \omega_{o}}-\beta e^{i t \sqrt{\omega_{0}^{2}+2 \omega_{s}^{2}}}
$$

where

$$
\omega_{0}=\sqrt{\frac{g}{l}} \text { and } \omega_{s}=\sqrt{\frac{k}{m}}
$$

