EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

SECOND EXAMINATION IN SCIENCE - 2009/2010
FIRST SEMESTER (June/July' 2011)
MT 201 - VECTORSPACES AND MATRICES

1. (a) Define what is meant by
i. a vector space;
ii. a subspace of a vector space.
(b) Let $V=\{x: x>0, x \in \mathbb{R}\}$. Define addition " \oplus " and scalar multiplication " \odot " on V as follows:

$$
\begin{aligned}
& x \oplus y=x y \\
& r \odot x=x^{r}
\end{aligned}
$$

$\forall r \in \mathbb{R}$ and $\forall x, y \in V$. Prove that (V, \oplus, \odot) is a vector space over \mathbb{R}.

Let

$$
\begin{aligned}
& x \oplus y=x y \\
& r \odot x=r x
\end{aligned}
$$

$\forall r \in \mathbb{R}$ and $\forall x, y \in V$. Is (V, \oplus, \odot) a vector space over \mathbb{R} ? Justify your answer.
(c) Let M be a vector space of 2×2 matrices over \mathbb{R}. Which of the following subsets are subspaces of M ? Justify your answer.
i. set of all 2×2 matrices with zero determinant;
ii. set of all 2×2 idempotent matrices.
2. (a) State the dimension theorem for two subspaces of a finite dimensional vector space.
(b) Let V be a finite dimensional vector space with the usual notations. Prove the following:
i. if $\operatorname{dim} V=n$, then there exist one dimensional subspaces $U_{1}, U_{2}, \cdots, U_{n}$, V such that $V=U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}$.
ii. if $U_{1}, U_{2}, \cdots, U_{m}$ are subspaces of V, then

$$
\operatorname{dim}\left(U_{1}+U_{2}+\cdots+U_{m}\right) \leq \operatorname{dim} U_{1}+\operatorname{dim} U_{2}+\cdots+\operatorname{dim} U_{m}
$$

(c) i. Prove that if $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ spans V, then so does the tuple $\left\{v_{1}-v_{2}, v_{2}\right.$ $\left.v_{3}, \cdots, v_{n-1}-v_{n}, v_{n}\right\}$.
ii. Let V be a vector space of \mathbb{R}^{5} defined by

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}: x_{1}=3 x_{2} \text { and } x_{3}=7 x_{4}\right\}
$$

Find a basis of V.
iii. If U_{1} and U_{2} are both 5 dimensional subspaces of \mathbb{R}^{9}, then prove that $U_{1} \cap U_{2} \neq\{0\}$.
3. (a) Define the following:
i. range space $R(T)$;
ii. null space $N(T)$
of a linear transformation T from a vector space V into another vector space W.
(b) Find $R(T)$ and $N(T)$ of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y, z)=(x+2 y+3 z, x-y+z, x+5 y+5 z), \forall(x, y, z) \in \mathbb{R}^{3} .
$$

Verify the equation $\operatorname{dim} V=\operatorname{dim}(R(T))+\operatorname{dim}(N(T))$ for this linear transformation.
(c) i. Let \mathbb{P}_{3} be the set of all polynomials of degree ≤ 3 and let $T: \mathbb{R}^{3} \rightarrow \mathbb{P}_{3}$, be a linear transformation defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+\left(x_{2}+x_{3}\right) x+\left(x_{3}-x_{1}\right) x^{2}+x_{3} x^{3}
$$

Find the matrix representation of T with respect to the bases
$B_{1}=\{(1,1,1),(1,2,3),(2,-1,1)\}$ and $B_{2}=\left\{1+x, x+x^{2}, x^{2}+x^{3}, x^{3}\right\}$ of \mathbb{R}^{3} and \mathbb{P}_{3}, respectively.
ii. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T(x, y, z)=(x+$ $2 y-z, y+z, x+y-2 z)$ and let $B_{1}=\{(0,0,1),(0,1,1),(1,1,1)\}$ and $B_{2}=$ $\{(1,1,0),(0,1,1),(1,0,1)\}$ be bases for \mathbb{R}^{3}. Find the matrix representation of T with respect to the basis B_{2} by using the transition matrix.
4. (a) Define the following terms as applied to a matrix:
i. rank;
ii. echelon form;
iii. row reduced echelon form.

(b) Let A be an $n \times n$ matrix. Prove the following:
i. row rank of A is equal to column rank of A;
ii. if B is an $n \times n$ matrix obtained by performing an elementary row operation on A, then $r(A)=r(B)$.
(c) i. Find the row rank of the matrix

$$
\left(\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & -1 & 1 \\
1 & 1 & 3 & 3 & 0 & 2 \\
2 & 1 & 3 & 3 & -1 & 3 \\
2 & 1 & 1 & 1 & -2 & 4
\end{array}\right)
$$

ii. Find the row reduced echelon form of the matrix

$$
\left(\begin{array}{rrrr}
-1 & 3 & -1 & 2 \\
0 & 11 & -5 & 3 \\
2 & -5 & 3 & 1 \\
4 & 1 & 1 & 5
\end{array}\right)
$$

5. (a) Define the following terms as applied to an $n \times n$ matrix $A=\left(a_{i j}\right)$.
i. cofactor $A_{i j}$ of an element $a_{i j}$;
ii. adjoint of $A(\operatorname{adj} A)$.

With the usual notations, prove that

$$
A \cdot(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=\operatorname{det} A \cdot I .
$$

Hence prove $\operatorname{adj}(\operatorname{adj} A)=(\operatorname{det} A)^{n-2} A$.
(State any results you may use)
(b) Let P be an $n \times n$ matrix with all elements are equal to $\alpha(\in \mathbb{R})$. For any non-zero scalar $\mu \in \mathbb{R}$, prove that
i. $\operatorname{det}(P+\mu I)=\mu^{n-1}(n \alpha+\mu)$;
ii. $(P+\mu I)^{-1}=\frac{1}{\mu(n \alpha+\mu)}\left(\begin{array}{cccc}(n-1) \alpha+\mu & -\alpha & \cdots & -\alpha \\ -\alpha & (n-1) \alpha+\mu & \cdots & -\alpha \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \ddots & \cdot & \cdot \\ -\alpha & -\alpha & \cdots & (n-1) \alpha+\beta\end{array}\right.$
6. State the necessary and sufficient condition for a system of linear equations to be consistent.
7. (a) Suppose n is a positive integer and $a_{i, j} \in \mathbb{R}$ for $i, j=1,2, \cdots, n$. Prove that the following are equivalent:
i. the trivial solution $x_{1}=x_{2}=\cdots=x_{n}=0$ is the only solution to the homogeneous system

$$
\begin{aligned}
& \sum_{k=1}^{n} a_{1, k} x_{k}=0 \\
& \sum_{k=1}^{n} a_{2, k} x_{k}=0
\end{aligned}
$$

$$
\sum_{k=1}^{n} a_{n, k} x_{k}=0
$$

ii. for every constant, $c_{1}, c_{2}, \cdots, c_{n} \in \mathbb{R}$, there exists a solution to the system of equations

$$
\sum_{k=1}^{n} a_{1, k} x_{k}=c_{1}
$$

$$
\begin{gathered}
\sum_{k=1}^{n} a_{2, k} x_{k}=c_{2} \\
\cdots \\
\sum_{k=1}^{n} a_{n, k} x_{k}=c_{n}
\end{gathered}
$$

(b) Investigate for what value of λ, μ the system of liner equation

$$
\begin{gathered}
x+y+z=6 \\
x+2 y+3 z=10 \\
x+2 y+\lambda z=\mu
\end{gathered}
$$

have
i. no solution;
ii. a unique solution;
iii. an infinite number of solutions.
(c) A bag contains 3 types of coins, namely, Rs.1, Rs. 2 and Rs.5. There are 30 coins amounting to Rs. 100 in total. Find the number of coins in each category.

