

SODEC 2011 Paren University, Sri I

M.

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS SECOND EXAMINATION IN SCIENCE - (2009/2010) FIRST SEMESTER (June/July, 2011) MT 203 - EIGENSPACES AND QUADRATIC FORMS

Answer all questions

Time: Two hours

- 1. (a) Define the following terms as applied to a square matrix $A = (a_{ij})$:
 - i. eigenvalue;
 - ii. characteristic polynomial, $\psi_A(\lambda)$, of A;
 - iii. trace of A(tr(A)).
 - (b) Let x be an eigenvector of a real n×n matrix A corresponding to the eigenvalue λ. Show that x is an eigenvector corresponding to the eigenvalue λ^m of A^m, for each m = 1, 2, 3, ··· . Hence show that, if A is
 - i. an idempotent matrix, then λ must be 0 or 1.
 - ii. a nilpotent matrix, then $\psi_A(t) = t^n$ and tr(A) = 0.
 - (c) Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be eigenvalues of an $n \times n$ matrix A with multiplicities. Prove the following:

i.
$$\lambda_j = a_{jj} + \sum_{i \neq j} (a_{ii} - \lambda_i)$$
, for $j = 1, 2, \cdots, n$;

ii. det $A = \lambda_1 \times \lambda_2 \times \cdots \times \lambda_n$, where det A means determinant of A.

(d) Prove that, if two diagonalizable matrices A and B have the same eigenvectors then, AB = BA.

Prove the converse of the above statement with an assumption that the eigenvalues of A are all distinct.

- 2. (a) Define the following terms:
 - i. minimum polynomial;
 - ii. irreducible polynomial,

of a square matrix.

- (b) Prove the following:
 - i. If m(t) is the minimum polynomial of an $n \times n$ matrix A and $\psi_A(t)$ is characteristic polynomial of A, then $\psi_A(t)$ divides $[m(t)]^n$.
 - ii. The characteristic and minimum polynomials of a square matrix have same irreducible factors.
 - iii. $f(t) = t^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0$ is the minimum polynomial of n-square matrix

1	0	0	• • •	0	0	$-a_0$
	1	0		0	0	$-a_1$
	0	1	• • •	0	0	$-a_2$
	••••	•••		•••	•••	Saulta Contes
	0	0	•••	1	0	$-a_{n-2}$,
	0	0	•••	0	1	$-a_{n-1}$

Hence find the matrix whose minimum polynomial is $t^4 - 5 t^3 - 2 t^2 + 7t$

3. (a) Find an orthogonal transformation which reduces the following quadraticity to a diagonal form

$$5x_1^2 + 11x_2^2 - 2x_3^2 + 12x_1x_3 + 12x_2x_3$$

(b) Simultaneously diagonalize the following pair of quadratic forms

$$x_1^2 - x_2^2 + x_3^2 - 2x_2x_3 - 2x_1x_3 - 2x_1x_2;$$

$$3x_1^2 + x_2^2 + 3x_3^2 + 2x_1x_2 - 2x_2x_3 - 2x_1x_3.$$

4. (a) Prove that A is an $n \times n$ real symmetric matrix if and only if there exists an orthogonal matrix Q such that $Q^T A Q$ is diagonal. Find an orthogonal matrix Q and a diagonal matrix D such that $Q^T A Q = D$, where

$$A = \begin{pmatrix} -2 & 4 & -2 \\ 4 & 4 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$

(b) Define the term inner product in a vector space.
Let C[0, 1] be the vector space of all real-valued continuous functions on [0, 1].
For any two functions f(x) and g(x) in C[0, 1], define

$$\langle f,g\rangle = \int_0^1 f(x)g(x)dx.$$

Show that $\langle \ , \ \rangle$ is an inner product on C[0,1].

(c) Use the Gram-Schmidt process to find orthonormal basis for the column space of the matrix