EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
THIRD EXAMINATION IN SCIENCE -2009/2010 (2011)
FIRST SEMESTER (June /July, 2011)
CS301 - COMPUTER GRAPHICS

Q1)
a) What is meant by scan conversion in Computer graphics?
b) What are the differences between raster scan display \& random scan display?
c) Derive the necessary equations to generate Bresenham's circle algorithm.
d) Write the Bresenham's circle algorithm.
e) Get all the pixel co-ordinates to draw a circle of radius $\mathrm{r}=10$ with center $(0,0)$. (Apply this algorithm)
f) Plot all the pixel co-ordinates to draw this complete circle.

Q2) The basic 2-D transformations in Computer graphics are translation, scaling, and rotation. A point $P(p, q)$ in a two dimensional coordinate system can be represented in homogeneous coordinate system in different ways.
a) Explain briefly how homogeneous coordinate system would be useful in transformation in computer graphics.
b) Give the corresponding matrices (in homogeneous system) for each of the following transformations:
i. Translation
ii. Scaling
iii. Rotation
c)

Consider the squares shown below as object-1 and object-2;
D (0,40)
C $(40,40)$

A $(0,0)$
B $(40,0)$

Object-1

Object-2
i. Write down the steps and corresponding transformation matrices to obtain object-2 from object-1.
ii. Compute the coordinates of C^{\prime} using the resultant transformation matrix.
a) Define window and viewport in Computer graphics.
b) The following diagram shows a window and a viewport,

$\left(W_{x \min }, W_{y m i n}\right)$
Window
Viewport
Write down the function to map a point (Wx, Wy) in the window to a point $(\mathrm{Vx}, \mathrm{Vy})$ the viewport.
c) Write down the Liang-Barsky Line Clipping method.
d) Let W be a window whose bottom-left corner is $(100,100)$ and the top right corner is $(200,200)$ and $A B$ be a straight line with $A=(50,50)$ and $B=(150,250)$. Apply the above algorithm to clip AB against W , and count in how many steps the clipping completes.

a) Give the equation for 3 Dimensional(3D) rotation about Y axis by an aingle
b) Describe the parallel projection and perspective projection of a 3D object on to $X Y$ plane.
c) Consider the objects ABCD positioned in a 3D coordinate system such that $A=(100,0,300), B=(100,0,600), C=(100+150 \sqrt{3}, 0,150)$ and $D=(50 \sqrt{3}, 400,150)$.

Find the perspective projection of this object on the XY plane with the Centre of Projection at $(0,0,-100)$ and draw the projected image.

