EASTERN UNIVERSITY, SRILANKA DEPARTMENT OF MATHEMATICS

THIRD EXAMINATION IN SCIENCE - 2009/2010 FIRST SEMESTER (June /July, 2011)

MT 306 - PROBABILITY THEORY

Time: 2 Hours
(01) Let X have an exponential distribution with parameter λ, so that its probability density function (pdf) is

$$
f(x)=\lambda e^{-\lambda x}, 0 \leq x
$$

(i) Show that the moment generating function(mgf) $M_{X}(t)$ of X is

$$
M_{X}(t)=\frac{\lambda}{\lambda-t}, \quad t<\lambda .
$$

(ii) Use $M_{X}(t)$ to find the mean and variance of X.
(iii)Let $Y=3 X+1$: Find the mgf of Y. State, with reasons, whether or not Y has an exponential distribution.
(02) (a) The weight of a certain brand of chocolate bars are assumed to be normally distributed with $\mu=50 \mathrm{~g}$ and standard deviation $\sigma=1 \mathrm{~g}$. A random sample of 7 bars is taken. Find the probability that weight of a bar lies between 49 g and 52 g . Further, chocolate bars having less than 40 g are not assumed to be in the standard quality in weight. Find the probability a chocolate bar has the standard quality in weight.
(b) Seats of a boat service, provide by a certain person should be booked early. In a boat, the maximum number of passengers can be carried is 10 . To cover the expenses of one ride, at least 3 passengers should attend for the boat ride. Probability that a person who has booked a seat, will attend is 0.7 . Find the probability that this service provider gets a loss from a certain boat ride.
(03) Let $f_{X Y}(x, y)$ be the 2-dimentional density and it is given by
$f_{X Y}(x, y)= \begin{cases}c \mathrm{e}^{-\lambda x} & ; 0<\mathrm{y}<\mathrm{x} \\ 0 & ; \text { else }\end{cases}$
(a) Find the constant c.
(b) Find the marginal densities $f_{X}(x)$ and $f_{Y}(y)$.
(c) Use $f_{X}(x)$ to find $\mathrm{E}(X)$ and $\mathrm{V}(X)$.
(d) Find the conditional distribution of X given Y.
(e) Find the probability $\operatorname{Pr}(X>2 / Y=1)$.
(04) (a) It is assumed that number of accident occur in a certain city, has a Poisson distribution with parameter λ.
(i) Use the method of moment and maximum likelihood separately to find an estimator for parameter λ.
(ii) Are they unbiased estimators for λ ? Justify your answers. If not, find their biases.
(b) Assume $X_{1}, X_{2}, X_{3}, \ldots, X_{\mathrm{n}}$ be a random sample obtained from a normal distribution having mean μ and known variance σ^{2}. Derive a ($1-\alpha$) 100% confidence interval for this population mean μ. Use the following sample to find 95% confidence limits of μ. (Sample: 10, 15, 12, 16, 14, 15, 20, 25, 11, 12)
(Assume $\sigma^{2}=25$ and $\mathrm{Z}_{0.05}=1.64, \mathrm{Z}_{0.025}=1.96, \mathrm{Z}_{0.95}=-1.65$)

