EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE - 2009/2010

FIRST SEMESTER (PROPER)

(June/July 2011)

PH 303 NUCLEAR PHYSICS

Time: 01 hour.
Answer ALL Questions

You may find the following data useful:
$1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J}$
$1 \mathrm{amu}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$
Avogadro number $=6.023 \times 10^{23}$

1. (A)
i. State the decay Law of radioactivity.
ii. Derive expressions for activity and half life of a radioactive sample.
iii. Plutonium (${ }^{239} \mathrm{Pu}$) is a by-product of nuclear reactors which use uranium fuel. Plutonium is an α-emitter with a half-life of 24,12 years. Consider existence of 1.0 kg of ${ }^{239} \mathrm{Pu}$ residue in a fissio product at time $t=0$ and estimate the following:
(a) Number of ${ }^{239} \mathrm{Pu}$ nuclei present at $\mathrm{t}=0$.
(b) Initial activity of ${ }^{239} \mathrm{Pu}$.
(c) Time interval needed to store the fission residue until the activity of plutonium drops to a safe activity level of 0.1 Bq.
(B)

In a radioactive series nuclei A decays to nuclei B with deca constant λ_{A} and nuclei B decays to λ_{B}. Number of nuclei B exists 2 time t will be given by the following equation:

$$
N_{B}=\frac{\lambda_{A} N_{0}}{\lambda_{B}-\lambda_{A}}\left[e^{-\lambda_{A} t}-e^{-\lambda_{B} t}\right]
$$

Where N_{0} is the number of nuclei A exist at time $\mathrm{t}=0$ and initiall number of nuclei B exists is zero.
i. Show that the number of nuclei would be maximum at $t=t$ where:

$$
t_{m}=\left(\lambda_{B}-\lambda_{A}\right)^{-1} \ln \left(\frac{\lambda_{B}}{\lambda_{A}}\right)
$$

ii. Consider the radioactive chain

$$
{ }_{92}^{235} U \rightarrow{ }_{90}^{231} T h \rightarrow{ }_{91}^{231} \mathrm{~Pa}
$$

iii. Determine the number ratio ${ }_{90}^{231} T h$ nuclei to ${ }_{92}^{235} U$ atoms at 50 hours if initially the number of ${ }_{90}^{231} \mathrm{Th}$ nuclei exists is zero. The half life of Uranium and 7.13×10^{8} Years and 25.5 hours respectively
2. i. What is meant by scattering process and elastic scattering in the study of nuclear Physics?
ii. An α-particle is elastically scattered from a proton which is initially at rest. Show that:

$$
\left(1-\frac{M_{p}}{M_{\alpha}}\right) P_{0}^{2}-2 P_{0} P_{1} \cos \theta_{\alpha}+\left(1+\frac{M_{p}}{M_{\alpha}}\right) P_{1}^{2}=0
$$

where P_{0} and P_{1} are the initial and final momentum of the α-particle respectively. θ_{α} is the angle between the direction of scattered α particle and its original direction. M_{p}, M_{α} are the masses of proton and α-particle respectively.
iii. Show also that the maximum possible scattering angle θ_{α} is $14^{\circ} 30^{\prime}$.

