EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE - 2009/2010

FIRST SEMESTER (PROPER)

LIBRARD

2011

Sel De

30DEC

Bestern University.

28-

(June/July 2011)

PH 303 NUCLEAR PHYSICS

Time: 01 hour.

Answer ALL Questions

You may find the following data useful:

 $1 \text{ MeV} = 1.6 \times 10^{-13} \text{ J}$

 $1 \, \text{amu} = 931.5 \, \text{MeV}/c^2$

Avogadro number = 6.023×10^{23}

- 1. (A)
 - i. State the decay Law of radioactivity.
 - ii. Derive expressions for activity and half life of a radioactive sample.
 - iii. Plutonium (²³⁹Pu) is a by-product of nuclear reactors which use uranium fuel. Plutonium is an α -emitter with a half-life of 24,12 years. Consider existence of 1.0 kg of ²³⁹Pu residue in a fission product at time t=0 and estimate the following:

(a) Number of ²³⁹Pu nuclei present at t=0.

(b) Initial activity of ²³⁹Pu.

(c) Time interval needed to store the fission residue until the activity of plutonium drops to a safe activity level of 0.1 Bq.

(B)

In a radioactive series nuclei *A* decays to nuclei *B* with decay constant λ_A and nuclei *B* decays to λ_B . Number of nuclei *B* exists a time *t* will be given by the following equation:

$$N_B = \frac{\lambda_A N_0}{\lambda_B - \lambda_A} \left[e^{-\lambda_A t} - e^{-\lambda_B t} \right]$$

Where N_0 is the number of nuclei *A* exist at time t=0 and initial number of nuclei *B* exists is zero.

 Show that the number of nuclei would be maximum at t = t where:

$$t_m = (\lambda_B - \lambda_A)^{-1} ln \left(\frac{\lambda_B}{\lambda_A}\right)$$

ii. Consider the radioactive chain

 $^{235}_{92}U \rightarrow ^{231}_{90}Th \rightarrow ^{231}_{91}Pa$

Determine the number ratio ${}^{231}_{90}Th$ nuclei to ${}^{235}_{92}U$ atoms at 50 iii. hours if initially the number of $^{231}_{90}Th$ nuclei exists is zero. The Uranium half Thorium life of and 7.13×10^{8} Years and 25.5 hours respectively 30 DEC 201 Paging University,

Sri

- 2. i. What is meant by scattering process and elastic scattering in the study of nuclear Physics?
 - ii. An α –particle is elastically scattered from a proton which is initially at rest. Show that:

$$\left(1 - \frac{M_p}{M_\alpha}\right) P_0^2 - 2P_0 P_1 \cos\theta_\alpha + \left(1 + \frac{M_p}{M_\alpha}\right) P_1^2 = 0$$

where P_0 and P_1 are the initial and final momentum of the α - particle respectively. θ_{α} is the angle between the direction of scattered α particle and its original direction. M_p , M_α are the masses of proton and α - particle respectively.

iii. Show also that the maximum possible scattering angle θ_{α} is 14°30'.