EASTERN UNIVERSITY, SRI LANKA

SPECIAL DEGREE EXAMINATION IN MATHEMATICS

-(2003/2004), (JUL./AUG.' 2005)

Part II

MT 404 - ALGEBRAIC TOPOLOGY

Answer all questions Time: Three hours

- 1. (a) Define a G-space, and prove, if X is a G-space, then the canonical projection $\Pi : X \to X|_G$ is an open map. [20]
 - (b) Establish that a subset S of a topological space X is compact if and only if S is compact as a space under the induced topology.

[30]

15 001

- (c) "A compact subset A of a Hausdorff space is closed."Verify this satatement. [20]
- (d) Let Y be a quotient space of the topological space X determined by the surjective map f : X → Y. If X is compact Hausdorff and f is closed, prove that Y is compact Hausdorff. [30]

- (a) Is the interval $[a, b] \subseteq \mathbb{R}$ connected? 2. Prove your assertion.
 - (b) Show that, upto homeomorphism, S^1 is the only compact connected 1-manifold.
 - (c) Let C be a Jordan curve given by $f: S^1 \to \mathbb{R}^2$. Prove that, for every $\epsilon > 0$, there exists a Jordan polygon C' given by $f' : S^1 \rightarrow$ \mathbb{R}^2 such that $|f(x) - f'(x)| < \epsilon$ for all $x \in S^1$. [30]
 - (d) If C is a Jordan curve, prove that $\mathbb{R}^2 C$ has at least two components.

(a) Define a strong deformation retract of a space X. 3. If $X = Y - \{(2,0), (-2,0)\}$, where Y is the subset of \mathbb{R}^2 defined by $Y = \{x = (x_1, x_2) : (x_1 - 1)^2 + x_2^2 = 1\} \cup \{x = (x_1, x_2) : x_1 - 1\}$ $(x_1+1)^2 + x_2^2 = 1$, show that the subset $\{x_0\}$, where $x_0 = (0,0)$, of X is a strong deformation retract of X. 25

- (b) Let $\phi, \psi : X \to Y$ be continuous mappings between topological spaces. Let $F: \phi \simeq \psi$ be a homotopy. If $f: I \to Y$ is the path from $\phi(x_0)$ to $\psi(x_0)$ given by $f(t) = F(x_0, t)$, show that the homomorphisms $\phi_* : \Pi(X, x_0) \to \Pi(Y, \phi(x_0))$ and $\psi_* : \Pi(X, x_0) \to$ $\Pi(Y,\psi(x_0))$ are related by $\psi_* = U_f \phi_*$, where U_f is the isomorphism from $\Pi(Y, \phi(x_0))$ to $\Pi(Y, \psi(x_0))$ determined by the path f.
- (c) If X, Y are two path connected topological spaces, can we conclude that the fundamental group of the product space $X \times Y$ is isomorphic to the product of the fundamental groups of X and Y? Prove your conclusion.

40

35]

[10]

30]

30]

- 4. (a) Show that any continuous map f : I → S¹ has a lift f̃ : I → ℝ. Also show that, given x₀ ε ℝ, with e(x₀) = f(0), there is a unique f̃ with f̃(0) = x₀ where e : ℝ → S¹ is defined by e(t) = exp(2πit) for t ε ℝ.
 - (b) Let f_0 and f_1 be equivalent paths in S^1 based at 1. If \tilde{f}_0 and \tilde{f}_1 are lifts with $\tilde{f}_0(0) = \tilde{f}_1(0)$, prove that $\tilde{f}_0(1) = \tilde{f}_1(1)$, [20]
 - (c) Under usual notations, show that $\Pi(S^1, 1) \cong \mathbb{Z}$. [40]
- 5. (a) Define a covering map.
 Let X be a G-space. If the action of G on X is properly discontinuous, show that p: X → X|_G is a covering. [20]
 - (b) Let $p: \tilde{X} \to X$ be a covering map. Then prove:
 - i. p is an open map.

ii. X has the quotient topology with respect to p. [20]

- (c) Let $p: \tilde{X} \to X$ be a covering with \tilde{X} path connected. If $\tilde{x_0}, \tilde{x_1} \in \tilde{X}$, prove that there is a path f in X from $p(\tilde{x_0})$ to $p(\tilde{x_1})$ such that $U_f p_*(\Pi(\tilde{X}, \tilde{x_0})) = p_*(\Pi(\tilde{X}, \tilde{x_1})).$ [15]
- (d) Establish the following results:
 - i. The function ψ : $\Pi(X|_G, y_0) \to G$ is a homomorphism of groups.
 - ii. The kernel of ψ : $\Pi(X|_G, y_0) \to G$ is a sub group $p_*(\Pi(X, x_0))$. iii. $\Pi(X|_G, y_0)/_{p_*(\Pi(X, x_0))} \cong G$. [45]
- 6. (a) If X is a non-empty path connected space, prove that $H_0(X) \cong \mathbb{Z}$. [30]
 - (b) Under the usual notations, show that $\partial f_{\#} = f_{\#}\partial$. [20]
 - (c) Let $f, g: X \to Y$ be two continuous maps. If f and g are homotophic, show that $f_* = g_* : H_n(X) \to H_n(Y), \forall n > 0.$ [50]