

EASTERN UNIVERSITY, SRI LANKA

PECIAL DEGREE EXAMINATION IN MATHEMATICS-(2003/200

(JUL./AUG.' 2005)

Part II

MT 405 - FUNCTIONAL ANALYSIS

Answer all questions Time: Three hours

 (a) Let Y and Z be subspaces of a normed linear space X, and suppose that Y is closed and is a proper subset of Z. Prove that for every real number θ in the interval (0, 1) there is a z ∈ Z such that

|| z || = 1 and $|| z - y || \ge \theta$ for all $y \in Y$.

[40 marks]

- (b) Prove that, if a normed linear space X has the property that the closed unit ball B = { x ∈ X | || x ||≤1 } is compact then X is finite dimensional.
 [30 marks]
- (c) Let X and Y be normed linear spaces. An operator
 T: X → Y is called compact linear operator if T is linear and if
 for every bounded subset M of X, the image T(M) is relatively
 compact, that is T(M) is compact.
 - i. Prove that, every compact linear operator $T : X \to Y$ is bounded. [15 marks]
 - ii. Is it true that every bounded linear operator $T: X \to Y$ is compact? Justify your answer. [15 marks]

(a) The linear space B(X, Y) of all bounded linear operators from a normed linear space X into a normed linear space Y is itself a normed linear space with norm defined by

$$|T|| = \sup_{x \in X} ||Tx||$$

 $||x|| = 1$

Prove that, if Y is a Banach space then B(X, Y) is a Banach space. [40 marks]

(b) Define the term "dual space X*of a normed linear space X" [10 marks]

Prove with the usual notations that, the dual space of l^1 is l^{∞} .

[50marks]

- (a) State the Baire "category" theorem and use it to prove the Uniform boundedness theorem. [50 marks]
 - (b) Let X be a normed linear space and E be a subset of X. Prove that E is bounded in X if and only if, f(E) is bounded for every $f \in X^*$. [50 marks]
- 4. Prove or disprove the following:
 - (a) The sequence space l^{∞} with the usual norm is separable.

[40 marks]

- (b) In a normed linear space weak convergence implies strong convergence.
 [30 marks]
- (c) Let X and Y be normed linear spaces and let (T_n) be a sequence of bounded linear operators in B[X, Y].

If $T: X \to Y$ is such that

 $|| T_n x - Tx ||_Y \longrightarrow 0$ for all $x \in X$ as $n \longrightarrow \infty$,

then

 $|| T_n - T ||_{B[X,Y]} \longrightarrow 0 \text{ as } n \longrightarrow \infty.$

[30 marks]

5. (a) Define a closed linear operator from a normed linear space X into a normed linear space Y. [15 marks]

- (b) State the **Open Mapping** Theorem and used it to prove the Closed Graph Theorem. [50 marks]
- (c) Give an example of a closed linear operator which is not bounded. Justify your answer. [35 marks]
- 6. (a) Let M be a closed subspace of a Hilbert space H and let $x \in H$. Show that there exists a unique $x_0 \in M$ such that

 $|| x - x_0 || = \inf_{m \in M} || x - m ||$ and $x - x_0 \perp M$.

[50 marks]

(b) State the **Hahn-Banach** theorem for a normed linear space X.

[10 marks]

i. Let X be a normed linear space and $x_0 \neq 0$ be any element of X. Prove that there exists a bounded linear functional ϕ on X such that

 $\| \phi \| = 1$ and $\phi(x_0) = \| x_0 \|$.

[20 marks]

ii. If f(x) = f(y) for every bounded linear functional f on a normed linear space X, show that x = y. [20 marks]