EASTERN UNIVERSITY, SRI LANKA

SPECIAL DEGREE EXAMINATION IN MATHEMATICS

estern Univer

(2003/2004 - July/August, 2005)

Part II

MT 411 - NUMERICAL THEORY OF ORDINARY DIFFERENTIAL EQUATIONS

Answer all questions Time: Three hours

1. (a) Let (α_n) be a sequence of real numbers satisfying

$$\alpha_{n+1} \le (1+A) \ \alpha_n + B \ , \quad n = 0, 1, 2, \cdots$$

with A > 0 and $B \ge 0$. Prove that

$$\alpha_n \leq (1+A)^n \ \alpha_0 + \left[(1+A)^n - 1 \right] \frac{B}{A} , \quad n = 0, 1, 2, \cdots$$

(b) Let $y \in C^2[0,1]$ be the solution of the m-dimensional system

$$y' = f(x, y), \quad 0 \le x \le 1, \quad y(0) = \nu,$$

where, for the maximum norm

$$|| f(x, u) - f(x, v) ||_{.} \le L || u - v ||$$

with L > 0 for all $u, v \in \mathbb{R}^m$ and for all $x \in [0, 1]$. Show that, for any x and h,

$$|| y(x+h) - y(x) - h y'(x) || \le \frac{1}{2} h^2 \cdot \max_{0 \le x \le 1} || y''(x) ||.$$

(c) For given y_0 , let y_1, y_2, \dots, y_N be given by the explicit Euler method

$$y_{n+1} = y_n + hf(nh, y_n), \quad n = 0, 1, 2, \cdots, N-1$$

with Nh = 1.

Show that

6.46

$$|| y(1) - y_N || \le e^L || y_0 - \nu || + \frac{h}{2L} (e^L - 1) \max_{0 \le x \le 1} || y''(x) ||$$

and comment briefly on the significance of this result.

- 2. (a) Define the following terms.
 - i. Consistency,
 - ii. Zero-stability,
 - iii. Convergence,

applied to the linear multi-step method

$$\sum_{j=0}^{k} \alpha_j \ y_{j+1} = h \sum_{j=0}^{k} \beta_j \ f_{n+j} \ , \quad (\alpha_k = 1),$$

used for solving initial-value problems of the form

$$y' = f(x, y), x \in [a, b], y(a) = \eta,$$

where $f : [a, b] \times \mathbb{R}^m \to \mathbb{R}^m$.

- (b) Prove that a convergent linear multi-step method is consistent.(Any result-used here should be stated.)
- (c) Show that for all values of α , the method

$$y_{n+2} + \alpha \ y_{n+1} - (1+\alpha) \ y_n = \frac{h}{2} \left[-\alpha f_{n+2} + (4+3\alpha) \ f_{n+1} \right]$$

is consistent. For which values of α is the method convergent?

3. (a) Define the order of a linear multi-step method in terms of the associated linear operator.

Show that the linear multi-step method

$$y_{n+2} - 2 y_{n+1} + y_n = \frac{h}{2} (f_{n+2} - f_n)$$

中国的出现

Passiern University,

SUL 2

is of order three.

(b) Show that a linear multi-step method with characteristic polynomials ρ and σ is of order p if and only if

$$\rho(z) - \ln(z)\sigma(z) = C_{p+1}(z-1)^{p+1} + C_{p+2}(z-1)^{p+2} + \cdots,$$

|z-1| < 1 with $C_{p+1} \neq 0$.

(c) A linear multi-step method with characteristic polynomial

$$\rho(z) = z^2 - z$$

is of maximum order. Determine the method and the error constant and explain why the method is convergent.

- 4. (a) Define the term "absolute stability" (at a point $q \in \mathbb{C}$) as applied to a numerical method for solving initial-value problems for ordinary differential equations.
 - (b) State a necessary and sufficient condition for a linear multi-step method, with characteristic polynomials ρ and σ, to be absolutely stable for given q ∈ C, in terms of the roots of the polynomial ρ(r) - q σ(r).

Show that a convergent linear multi-step method cannot be absolutely stable for small real positive q.

(c) Consider the two-step method

$$y_{n+2} - \frac{4}{3} y_{n+1} + \frac{1}{3} y_n = \frac{2}{3} h f_{n+2}.$$

Write down $\rho(r)$ and $\sigma(r)$ associated with this method and show that if r is a root of the polynomial $p(r) - q\sigma(r)$, then

$$q = \frac{3}{2} - 2 r^{-1} + \frac{1}{2} r^{-2}.$$

Hence show that if $q \in \partial S$ (where ∂S denotes the boundary of the region of absolute stability), then

$$q(\theta) = (\cos \theta - 1)^2 + i \, \sin \theta \, (2 - \cos \theta)$$

for some $\theta \in [0, 2\pi]$. Find the interval of absolute stability of the method.

5. (a) An s-stage Runge-Kutta method with coefficients array

	b_1	b_2		b_s					
c_s	a_{s1}	a_{s2}	•••	a_{ss}		3	i=1		
÷	:	:		:	,	$c_i = \sum_{i=1}^{n}$	$\sum a_{ij}$,	$i=1,2,\cdots$, s,
c_2	a_{21}	a_{22}	•••	a_{2s}			n		
c_1	<i>a</i> ₁₁	a_{12}	•••	a_{1s}					

is used to solve initial-value problems of the form

$$y' = f(y), \quad y(a) = \nu, \quad f : \mathbb{R}^m \to \mathbb{R}^m$$

Write down the formulae that define y_{n+1} , approximation to $y(x_n + h)$, given an approximation y_n to $y(x_n)$.

(b) Define the order of a Runge-Kutta method.

Prove that all explicit s-stage Runge-Kutta methods of order s have identical regions of absolute stability. Determine the interval of absolute stability when s = 2.

(c) Prove that the three-stage Runge-Kutta method coefficients

	0	$\frac{1}{2}$	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{1}{8}$	$\frac{3}{8}$	0
$\frac{1}{2}$	$\frac{1}{2}$	0	0
0	0	0	0

LIBRA

Castorn Univ. rela

20

is of order 2 and that the interval of absolute stability is [-4, 0]. [The order conditions may be assumed but should be stated].

6. (a) The coefficients of an s-stage Runge-Kutta method are given by the array

Let $B = \text{diag}(b_1, b_2, \dots, b_s)$. Define the terms "B-stability" and "algebraic stability" as applied to the Runge-Kutta method.

- (b) Prove that, if a Runge-Kutta method is algebraically stable, then it is B-stable.
- (c) Is the two-stage Runge-Kutta method given by the array

	$\frac{3}{4}$	$\frac{1}{4}$
$\frac{1}{2}$	$\frac{3}{8}$	$\frac{1}{8}$
$\frac{1}{2}$	$\frac{3}{8}$	$\frac{1}{8}$

algebraically stable? Justify your answers.