EASTERN UNIVERSITY, SRI LANKA
SPECIAL DEGREE EXAMINATION IN MATHEMATICS
(2003/2004 - July/August, 2005)
Part II

MT 411 - NUMERICAL THEORY OF ORDINARY DIFFERENTIAL EQUATIONS

Answer all questions

Time: Three hours

1. (a) Let $\left(\alpha_{n}\right)$ be a sequence of real numbers satisfying

$$
\alpha_{n+1} \leq(1+A) \alpha_{n}+B, \quad n=0,1,2, \cdots,
$$

with $A>0$ and $B \geq 0$. Prove that

$$
\alpha_{n} \leq(1+A)^{n} \alpha_{0}+\left[(1+A)^{n}-1\right] \frac{B}{A}, \quad n=0,1,2, \cdots
$$

(b) Let $y \in C^{2}[0,1]$ be the solution of the m-dimensional system

$$
y^{\prime}=f(x, y), \quad 0 \leq x \leq 1, \quad y(0)=\nu
$$

where, for the maximum norm

$$
\|f(x, u)-f(x, v)\| \leq L\|u-v\|
$$

with $L>0$ for all $u, v \in \mathbb{R}^{m}$ and for all $x \in[0,1]$. Show that, for any x and h,

$$
\left\|y(x+h)-y(x)-h y^{\prime}(x)\right\| \leq \frac{1}{2} h^{2} \cdot \max _{0 \leq x \leq 1}\left\|y^{\prime \prime}(x)\right\| .
$$

(c) For given y_{0}, let $y_{1}, y_{2}, \cdots, y_{N}$ be given by the explicit Euler method

$$
y_{n+1}=y_{n}+h f\left(n \dot{h}, y_{n}\right), \quad n=0,1,2, \cdots, N-1
$$

with $N h=1$.
Show that

$$
\left\|y(1)-y_{N}\right\| \leq e^{L}\left\|y_{0}-\nu\right\|+\frac{h}{2 L}\left(e^{L}-1\right) \max _{0 \leq x \leq 1}\left\|y^{\prime \prime}(x)\right\|
$$

and comment briefly on the significance of this result.
2. (a) Define the following terms.
i. Consistency,
ii. Zero-stability,
iii. Convergence,
applied to the linear multi-step method

$$
\sum_{j=0}^{k} \alpha_{j} y_{j+1}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}, \quad\left(\alpha_{k}=1\right)
$$

used for solving initial-value problems of the form

$$
y^{\prime}=f(x, y), \quad x \in[a, b], \quad y(a)=\eta,
$$

where $f:[a, b] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$.
(b) Prove that a convergent linear multi-step method is consistent. (Any result-used here should be stated.)
(c) Show that for all values of α, the method

$$
y_{n+2}+\alpha y_{n+1}-(1+\alpha) y_{n}=\frac{h}{2}\left[-\alpha f_{n+2}+(4+3 \alpha) f_{n+1}\right]
$$

is consistent. For which values of α is the method convergent?
3. (a) Define the order of a linear multi-step method in terms of the associated linear operator.
Show that the linear multi-step method

$$
y_{n+2}-2 y_{n+1}+y_{n}=\frac{h}{2}\left(f_{n+2}-f_{n}\right)
$$

is of order three.
(b) Show that a linear multi-step method with characteristic polynomials ρ and σ is of order p if and only if

$$
\begin{aligned}
& \quad \rho(z)-\ln (z) \sigma(z)=C_{p+1}(z-1)^{p+1}+C_{p+2}(z-1)^{p+2}+\cdots, \\
& |z-1|<1 \text { with } C_{p+1} \neq 0 .
\end{aligned}
$$

(c) A linear multi-step method with characteristic polynomial

$$
\rho(z)=z^{2}-z
$$

is of maximum order. Determine the method and the error constant and explain why the method is convergent.
4. (a) Define the term "absolute stability" (at a point $q \in \mathbb{C}$) as applied to a numerical method for solving initial-value problems for ordinary differential equations.
(b) State a necessary and sufficient condition for a linear multi-step method, with characteristic polynomials ρ and σ, to be absolutely stable for given $q \in \mathbb{C}$, in terms of the roots of the polynomial $\rho(r)-q \sigma(r)$.

Show that a convergent linear multi-step method cannot be absolutely stable for small real positive q.
(c) Consider the two-step method

$$
y_{n+2}-\frac{4}{3} y_{n+1}+\frac{1}{3} y_{n}=\frac{2}{3} h f_{n+2} .
$$

Write down $\rho(r)$ and $\sigma(r)$ associated with this method and show that if r is a root of the polynomial $p(r)-q \sigma(r)$, then

$$
q=\frac{3}{2}-2 r^{-1}+\frac{1}{2} r^{-2}
$$

Hence show that if $q \in \partial S$ (where ∂S denotes the boundary of the region of absolute stability), then

$$
q(\theta)=(\cos \theta-1)^{2}+i \sin \theta(2-\cos \theta)
$$

for some $\theta \in[0,2 \pi]$. Find the interval of absolute stability of the method.
5. (a) An s-stage Runge-Kutta method with coefficients array

$$
\begin{array}{c|cccc}
c_{1} & a_{11} & a_{12} & \cdots & a_{1 s} \\
c_{2} & a_{21} & a_{22} & \cdots & a_{2 s} \\
\vdots & \vdots & \vdots & & \vdots \\
c_{s} & a_{s 1} & a_{s 2} & \cdots & a_{s s} \\
\hline & b_{1} & b_{2} & \cdots & b_{s}
\end{array} \quad c_{i}=\sum_{j=1}^{n} a_{i j}, \quad i=1,2, \cdots, s,
$$

is used to solve initial-value problems of the form

$$
y^{\prime}=f(y), \quad y(a)=\nu, \quad f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} .
$$

Write down the formulae that define y_{n+1}, approximation to $y\left(x_{n}+h\right)$, given an approximation y_{n} to $y\left(x_{n}\right)$.
(b) Define the order of a Runge-Kutta method.

Prove that all explicit s-stage Runge-Kutta methods of order s have identical regions of absolute stability. Determine the interval of absolute stability when $s=2$.
(c) Prove that the three-stage Runge-Kutta method coefficients

0	0	0	0
$\frac{1}{2}$	$\frac{1}{2}$	0	0
$\frac{1}{2}$	$\frac{1}{8}$	$\frac{3}{8}$	0
	0	$\frac{1}{2}$	$\frac{1}{2}$

is of order 2 and that the interval of absolute stability is $[-4,0]$.
[The order conditions may be assumed but should be stated].
6. (a) The coefficients of an s-stage Runge-Kutta method are given by the array

$$
\begin{array}{l|l}
C & A \\
\hline & b^{T}
\end{array}, C=A e, \quad e=[1,1, \cdots, 1]^{T}, b^{T}=\left[b_{1}, b_{2}, \cdots, b_{s}\right] .
$$

Let $B=\operatorname{diag}\left(b_{1}, b_{2}, \cdots, b_{s}\right)$. Define the terms "B-stability" and "algebraic stability" as applied to the Runge-Kutta method.
(b) Prove that, if a Runge-Kutta method is algebraically stable, then it is B-stable.
(c) Is the two-stage Runge-Kutta method given by the array

$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$
$\frac{3}{4}$	$\frac{3}{8}$	$\frac{3}{8}$
	$\frac{1}{2}$	$\frac{1}{2}$

algebraically stable? Justify your answers.

