DEPARTMENT OF MATHEMATICS
SPECIAL DEGREE EXAMINATION
IN MATHEMATICS, (1998/1999)
(July/August 2005)

MT 419 - LIE GROUP ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

Answer all questions
Time allowed: 3 Hours

Q1. (i) Prolong the transformation G :

$$
\bar{t}=t, \quad \bar{x}=x+2 a t, \quad \bar{u}=u e^{-\left(a x+a^{2} t\right)}, \quad a \in \mathbb{R},
$$

to the first derivatives.
[30 Marks]
(ii) Prove that the first prolongation of the transformation G, denoted by $G^{[1]}$, forms a continuous one-parameter group of transformations.
[40 Marks]
(iii) Deduce the generator $X^{[1]}$ corresponding to $G^{[1]}$.
[30 Marks]
Q2. (i) Given the generator

$$
X=x \frac{\partial}{\partial t}+t \frac{\partial}{\partial x},
$$

obtain its one-parameter group by using the exponential map.
[30 Marks]
(ii) Show that the Sine-Gordon equation $u_{t l}-u_{x x}=\sin u$ has X in (i) as its generator of symmetry. [30 Marks]
(iii) Obtain the second-order ordinary differential equation which gives rise to the invariant solutions of the Sine-Gordon equation corresponding to X.

Q3. The one-dimensional linear heat equation

$$
u_{t}-u_{x x}=0
$$

admits amongst others the generator of point-symmetry

$$
X=t^{2} \frac{\partial}{\partial t}+t x \frac{\partial}{\partial x}-\left[\frac{t}{2}+\frac{x^{2}}{4}\right] u \frac{\partial}{\partial u} .
$$

Find the group-invariant solution corresponding to the symmetry gellerator X.
[100 Marks]
Q4. (i) Show that the invariants of the operator $X=a \frac{\partial}{\partial t}+t \frac{\partial}{\partial x}+\frac{\partial}{\partial u}$, a is a constant, are $\gamma=x-\frac{t^{2}}{2 a}$ and $\beta=u-\frac{t}{a}$.
[40 Marks]
(ii) Given that the KdV (Korteweg-de Vries) equation

$$
u_{t}+u_{x x x}+\ddot{u} u_{x}=0
$$

admits the symmetry generatot X above, show that the G-invariant solutions of the equation satify the ordinary differential equation

$$
\beta_{\gamma \gamma}+\frac{1}{2} \beta^{2}+\frac{1}{a} \gamma+c=0
$$

c is a constant.
[100 Marks
Q5. The partial differential equation

$$
u_{t}=\left(e^{u} u_{x}\right)_{x}
$$

is a nonlinear heat equation admits the generators of point symmetries

$$
X_{1}=\frac{\partial}{\partial t}, \quad X_{2}=\frac{\partial}{\partial x}, \quad X_{3}=2 t \frac{\partial}{\partial t}+x \frac{\partial}{\partial x}, \quad X_{4}=x \frac{\partial}{\partial x}+2 \frac{\partial}{\partial u} .
$$

(i) Obtain the one-parameter groups G_{i} generated by the X_{i} s.
(ii) If $u=h(t, x)$ is a solution to the equation, find the solutions associated with each of the $G_{i} \mathrm{~s}$.
(iii) Find the most general travelling wave solutions to the equation. [30 Marks]

Q6. Equivalence transformation transforms any member of a class of partial differential equations to an equation which is also a member of the same class. Show that the transformation (ϕ and ψ are arbitrary functions)

$$
\bar{x}=\phi(x), \quad \bar{y}=\psi(y), \quad \bar{u}=u
$$

is an equivalence tranformation of the hyperbolic equation

$$
u_{x y}+A(x, y) u_{x}+B(x, y) u_{y}+C(x, y) u=0
$$

where A, B and C are arbitrary functions.

