EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE 2002 2003

April./May.'2004

Repeat

MT 201 - VECTOR SPACES AND MATRICES

Answer four questions

Time: Two hours

BRA

- Q1. (a) Define what is meant by
 - (i) a vector space;
 - (ii) a subspace of a vector space.

Let V be a vector space over a field F and W be a non-empty subset of V. Prove that W is a subspace of V if and only if $ax + by \in W$ for every $x, y \in W$ and for every $a, b \in F$.

- (b) Let W_1 and W_2 be two subspaces of a vector space V over a field F and let A_1 and A_2 be non-empty subsets of V. Show that
 - (i) $W_1 + W_2$ is the smallest subspace containing both W_1 and W_2 ;
 - (ii) if A_1 spans W_1 and A_2 spans W_2 then $A_1 \cup A_2$ spans $W_1 + W_2$.

1

(c) Let V be the vector space of all functions from real field \mathbb{R} into \mathbb{R} . Which of the following subsets are subspaces of V? Justify your answer.

(i)
$$W_1 = \{ f \in V : f(3) = 0 \}$$

- (ii) $W_2 = \{ f \in V : f(7) = f(1) \}$
- (iii) $W_3 = \{ f \in V : f(-x) = f(x), \forall x \in \mathbb{R} \}$
- (iv) $W_4 = \{ f \in V : f(7) = 2 + f(1) \}.$

Q2. (a) Define the following:

- i. A linearly independent set of vectors;
- ii. A basis for a vector space;
- iii. Dimension of a vector space.
- (b) Let V be an n-dimensional vector space.Show that:
 - i. A linearly independent set of vectors of V with n elements is a basis for V;
 - ii. Any linearly independent set of vectors of V may be extended as a basis for V;
 - iii. If L is a subspace of V, then there exists a subspace M of V such that $V = L \oplus M$;
 - iv. Extend the subset $\{(1, 2, -1, 1), (0, 1, 2, -1)\}$ to a basis for \mathbb{R}^4 .

(State any results you may use)

Q3. (a) Define:

- (i) Range space R(T);
- (ii) Null space N(T)

Essen University, 3

3

LIBRA

of a linear transformation T from a vector space V in to another vector space W.

Find R(T), N(T) of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$, defined by:

T(x, y, z) = (2x + y + 3z, 3x - y + z, -4x + 3y + z)

Verify the equation $\dim V = \dim(R(T)) + \dim(N(T))$ for this linear transformation.

- (b) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by: T(x, y, z) = (x+2y, x+y+z, z) and let $B_1 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ and $B_2 = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$ be bases for \mathbb{R}^3 . Find:
 - (i) the matrix representation of T with respect to the basis B_1 ;
 - (ii) the matrix representation of T with respect to the basis B_2 by using the transition matrix;
 - (iii) the matrix representation of T with respect to the basis B_2 directly.

Q4. (a) Define the following terms

- (i) Rank of a matrix;
- (ii) Echelon form of a matrix;
- (iii) Row reduced echelon form of a matrix.
- (b) Let A be an $m \times n$ matrix. Prove that
 - (i) row rank of A is equal to column rank of A;
 - (ii) if B is an $m \times n$ matrix obtained by performing an elementary row operation on A, then r(A) = r(B).
 - (c) Find the rank of the matrix

(1	3	1	-2	-3	
	1	4	3	-1	-4	
	2	3	-4	-7	-3	
	3	8	1	-7	-8)	

in the alteration is that?

(d) Find the row reduced echelon form of the matrix

(1	1	1	1	-1	1	1
	1	1	3	3	0	2	
	2	1	3	3	-1	3	
	2	1	1	1	-2	4)

Q5. (a) Define the following terms as applied to an $n \times n$ matrix $A = (a_{ij})$.

- (i) Cofactor A_{ij} of an element a_{ij} ,
- (ii) Adjoint of A.

Prove that

$$A \cdot (adjA) = (adjA) \cdot A = detA \cdot I$$

where I is the $n \times n$ identity matrix.

(b) If A and B are two $n \times n$ non-singular matrices, then prove that

- (i) $adj(\alpha A) = \alpha^{n-1} \cdot adjA$ for every real number α ,
- (ii) adj(AB) = (adjB) (adjA);
- (iii) $adj(A^{-1}) = (adjA)^{-1};$
- (iv) $adj(adjA) = (detA)^{n-2}A;$
- (v) $adj(adj(adjA)) = (detA)^{n^2 3n + 3}A^{-1}$.
- (c) Find the inverse of the matrix

$$\begin{bmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5 \end{bmatrix}$$

Q6. (a) State the necessary and sufficient condition for a system of linear equations to be consistent.

> Reduce the augmented matrix of the following system of linear equations to its row reduced echelon form and hence determine the conditions on a, b, c, d, e and f such that the system has;

- (i) a unique solution;
- (ii) no solution;
- (iii) more than one solution.

$$ax + by = e$$
$$cx + dy = f.$$

(b) State and prove Crammer's rule for 3×3 matrix and use it to solve:

 $2x_1 - 5x_2 + 2x_3 = 7$ $x_1 + 2x_2 - 4x_3 = 3$ $3x_1 - 4x_2 - 6x_3 = 5.$ (c) The system of equations,

$$2x + 3y + z = 5$$
$$3x + 2y - 4z + 7t = k + 4$$
$$x + y - z + 2t = k - 1$$

is known to be consistent. Find the value of k and the general solution of the system.

and gradered off, while these states and