EASTERN UNIVERSITY, SRI LANKA
SECOND EXAMINATION IN SCIENCE 2002/2003 \&
2002/2003(A) (Apr./May.'2004)
SECOND SEMESTER
(Repeat)

Answer all questions
Time : Two hours

1. Let f be a real valued bounded function on $[a, b]$. Explain what is meant by the statement that " f is Riemann integrable over $[a, b]$.
(a) With the usual notations, prove that a bounded function f on $[a, b]$ is Riemann integrable if, and only if, for given $\epsilon>0$ there exists a partition P such that

$$
U(P, f)-L(P, f)<\epsilon .
$$

(b) Let f be a Riemann integrable function on $[a, b]$. Prove that

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{(b-a)}{n} \sum_{k=1}^{n} f\left(a+k \frac{(b-a)}{n}\right) .
$$

Hence prove that

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right]=\ln 2
$$

(c) Let f be a real valued continuous function on a bounded interval $[a, b]$ and F be any function for which $F^{\prime \prime}(x)=f(x)$ for all $x \in[a, b]$. Prove that $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
2. When is an integral $\int_{a}^{b} f(x) d x$ said to be an improper integral of the first kind, the second kind and the third kind?

What is meant by the statements " an improper integral of the first kind is convergent" and "an improper integral of the second kind is convergent"?

Discuss the convergence of the following:

$$
\begin{aligned}
& \text { i } \int_{0}^{\infty} \frac{d x}{\sqrt{x} \sqrt{1+4 x^{2}}} \\
& \text { ii } \int_{1}^{\infty} \frac{\sin x}{x} d x \\
& \text { iii } \int_{3}^{5} \frac{\ln x}{x-3} d x
\end{aligned}
$$

3. Define the term "Uniform convergence" of a sequence of functions.
(a) If $\left\{f_{n}(x)\right\}$ is a sequence of continuous functions which converges uniformly to f on $E \subseteq \mathbb{R}$ and if c is a limit point of E, show that
i. f is continuous on E,
ii. $\lim _{x \rightarrow c} \lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \lim _{x \rightarrow c} f_{n}(x)$.
(b) i. Let $\left\{f_{n}\right\}$ be a sequence of functions that are integrable on $[a, b]$ and suppose that $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$ to f. Prove that f is integrable and $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x$.
ii. Provide a sequence of functions $\left\{g_{n}\right\}$ converges g on an interval $[0,1]$ such that $\int_{0}^{1} g_{n}(x) d x$ and $g(x) d x=$, Bil exist and $\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}(x) d x \neq \int_{0}^{1} g(x) d x$.
4. (a) Let $\left\{f_{n}\right\}$ be a sequence of real valued functions defined on $E \subseteq \mathbb{R}$. Suppose that for each $n \in \mathbb{N}$, there is a constant M_{n} such that

$$
\left|f_{n}(x)\right| \leq M_{n} \quad \text { for all } x \in E,
$$

where $\sum M_{n}$ converges. Prove that $\sum f_{n}$ converges uniformly on E.
(b) For each $n \in \mathbb{N}$, let $\left\{f_{n}\right\}$ be a sequence of real valued functions on (a, b) which has a derivative f_{n}^{\prime} on (a, b). Suppose that the series $\sum\left(f_{n}\right)$ converges for at least one point of (a, b) and that the series of derivatives $\sum\left(f_{n}^{\prime}\right)$ converges uniformly on (a, b). Prove that
i. there exists a real valued function f on (a, b) such that $\sum\left(f_{n}\right)$ converges uniformly on (a, b) to f.
ii. f has a derivative on (a,b) and $f^{\prime}=\sum f_{n}^{\prime}$.
(c) Prove that, for $0 \leq x \leq 1$, the series $\sum_{n=1}^{\infty} \frac{e^{-n x}}{n^{3}}$ converges uniformly to a function f in $[0,1]$.
Show that the series

$$
\sum_{n=1}^{\infty} \frac{d}{d x}\left(e^{-n x} / n^{3}\right)
$$

converges uniformly and $\sum_{n=1}^{\infty} f_{n}^{\prime}(x)=f^{\prime}(x)$.

