EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE 2002/03 & 2002/03(A)

SECOND SEMESTER(April/May'2004)

MT 205 - DIFFERENTIAL GEOMETRY

- 1. State and prove Serret-Frenet formula.
 - (a) Let C and C_1 be two curves with a common principal normal line. If κ and $\tau \neq 0$ are the curvature and torsion along C respectively, then show that there are constants α and γ such that $\kappa + \gamma \tau = \frac{1}{\alpha}.$
 - (b) A twisted curve Γ is given by the parametric equations $X = a \tan \theta$, $Y = a \cot \theta$, $Z = a\sqrt{2} \log(\tan \theta), a > 0, \theta$ being the parameter. If κ and τ are the curvature and torsion of Γ at a point P respectively, then prove that

$$\kappa = |\tau| = \frac{\sqrt{2}}{4a} \sin^2 2\theta$$

- 2. What is meant by saying that a curve is a helix?
 - (a) Prove, that a space curve to be a helix if and only if $\frac{\tau}{\kappa}$ is constant, where κ , au are curvature and torsion of the given space curve respectively.
 - (b) Show that the curve $\underline{r}(\alpha) = e^{\alpha} (a \cos \alpha, a \sin \alpha, b)$ is a helix, where a and b are constant.