EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE 2002/03 \& 2002/03(A)

SECOND SEMESTER(April/May'2004)
MT 205 - DIFFERENTIAL GEOMETRY

Answer all questions

1. State and prove Serret-Frenet formitia.
(a) Let C and C_{1} be two curves with a common principal normal line. If κ and $\tau(\neq 0)$ are the curvature and torsion along C respectively, then show that there are constants α and γ such that $\kappa+\gamma \tau=\frac{1}{\alpha}$.
(b) A twisted curve Γ is given by the parametric equations $X=a \tan \theta, Y=a \cot \theta$, $Z=a \sqrt{2} \log (\tan \theta), a>0, \theta$ being the parameter. If κ and τ are the curvature and torsion of Γ at a point P respectively, then prove that

$$
\kappa=|\tau|=\frac{\sqrt{2}}{4 a} \sin ^{2} 2 \theta
$$

2. What is meant by saying that a curve is a helix?
(a) Prove, that a space curve to be a helix if and only if $\frac{\tau}{\kappa}$ is constant, where κ, τ are curvature and torsion of the given space curve respectively.
(b) Show that the curve $\underline{r}(\alpha)=e^{\alpha}(a \cos \alpha, a \sin \alpha, b)$ is a helix, where a and b are constant.
