

Answer all questions

Time allowed: 3 hours

- 1) Let $f : [A, B] \to \mathfrak{R}$ be a bounded function, where $A, B \in \mathfrak{R}$ and A < B.
 - a. With the usual notations, define the lower Riemann sum $s(f,\Delta)$ and upper Riemann sum $S(f,\Delta)$ of f corresponding to the dissection Δ of [A,B].
 - b. Suppose that Δ, Δ^{l} and Δ^{l1} are dissections of the interval [A, B] and that $\Delta^{l} \subseteq \Delta$. Prove the following:
 - ▷ $s(f, \Delta^{\mathsf{I}}) \leq s(f, \Delta)$ and $S(f, \Delta) \leq S(f, \Delta^{\mathsf{I}})$

►
$$s(f, \Delta^{1}) \leq S(f, \Delta^{11}).$$

c. What do you mean by f is Riemann integrable over [A, B]? Prove that the following conditions are equivalent.

- > f is Riemann integrable over [A, B]
- Siven $\epsilon > 0$, there exists a dissection Δ of [A, B] such that $S(f, \Delta) s(f, \Delta) < \epsilon$.
- d. Suppose that f is Riemann integrable over [A, B]. Suppose further that $C \in [A, B]$ is such that f(x) = g(x) for every $x \in [A, B]$ except possibly at

x = C Prove that g is Riemann integrable and $\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx$.

- e. Give an example of a function which is not Riemann integrable.
- 2) Explain what is meant by a step function on \Re .
 - a. Let $f \in L(\mathfrak{R})$. Prove that there exists a sequence (φ_n) of step functions such that $\varphi_n(x) \to f(x)$ almost everywhere in \mathfrak{R} , and that $\int |f - \varphi_n| \to 0$ as $n \to \infty$.
 - b. If φ is a step function, show that $\int_{y_1}^{y_2} \varphi(x) \cos kx \, dx \to 0$ as $k \to \infty$.

c. Hence or otherwise, show that for $f \in L(\mathfrak{R})$, $\int f(x)\cos kx \, dx \to 0$ as $k \to \infty$.

3)
 a. State the Fubini's theorem in R² and use it to prove the following. Let f ∈ M(R²) and suppose that one of the integral

$$\int_{0}^{\infty} \left(\int_{0}^{\infty} |f(x,y)| dy \right) dx , \int_{0}^{\infty} \left(\int_{0}^{\infty} |f(x,y)| dx \right) dy \text{ exists. Prove that } f \in L^{1}(\mathbb{R}^{2}).$$

b. Prove that, if
$$f(x, y) = ye^{-(1+x^2)y^2}$$
, for $(x, y) \in \mathbb{R}^2$ then

$$\int_{0}^{\infty} \left(\int_{0}^{\infty} f(x, y) dy \right) dx = \int_{0}^{\infty} \left(\int_{0}^{\infty} f(x, y) dx \right) dy .$$
Deduce that $\int_{0}^{\infty} e^{-x^2} dx = \sqrt{\pi/2}$.

4) Prove the following: (You may use any convergence theorem.)

a.
$$\int_{0}^{\infty} e^{-\alpha t} dt = \frac{1}{\alpha}, \text{ where } \alpha > 0$$

b.
$$\int_{0}^{\infty} e^{-\alpha t} \cos\beta t dt = \frac{\alpha}{\alpha^{2} + \beta^{2}}, \text{ where } \alpha, \beta >$$

c.
$$\int_{0}^{\infty} \frac{\sin \alpha t}{e^{t} - 1} dt = \sum_{n=1}^{\infty} \frac{\alpha}{\alpha^{2} + n^{2}} \text{ where } a > 0.$$

5)

S.

- a. State the Monotone Convergence Theorem and Dominated Convergence theorems in L(I).
- b. Suppose that $I = [A, \infty)$, where $A \in \Re$. Suppose further that the function $f: I \to \Re$ satisfies the following conditions:
 - $f \in L([A, B])$ for every real number $B \ge A$.

• There exists a constant M > 0 such that $\iint_{A} f(x) dx \le M$ for every real

number $B \ge A$. Prove that

 $f \in L(I)$, the limit $\lim_{B \to \infty} \int_{A}^{B} f(x) dx$ exists and $\int_{A}^{\infty} f(x) dx = \lim_{B \to \infty} \int_{A}^{B} f(x) dx$.

- c. Let $f:[0,\infty) \to \Re$ be defined by $f(x) = n^{-1} \sin \pi x$, for every $x \in [n-1,n)$. Prove the following:
 - $= \lim_{B\to\infty} \int_{0}^{B} f(x) dx = \frac{2\log 2}{\pi};$
 - $\iint_{0}^{B} |f(x)dx|$ is not bounded as $B \to \infty$;
 - $f \notin L([0,\infty))$.

1 1 FEB 2011

- 6) Prove the following:
 - a. Every open set $G \subseteq \Re$ is a countable union of pair wise disjoint open intervals in \Re .
 - b. Suppose that I ⊆ ℜ is an interval and that f: I → ℜ is given. If there exists a sequence (f_n) in M(I), the set of all measurable functions on I, such that f_n(x) → f(x) as n→∞ for almost all x∈I, then f∈ M(I).
 - c. A subset S of \Re has measure zero if and only if the following two conditions are satisfied:

•
$$\Psi_s \in L(\mathfrak{R})$$
; and

$$\int_{\mathfrak{N}} \Psi_{\mathcal{S}}(x) dx = 0 \; .$$

d. There exist sequences $(g_n), (h_n)$ in $L(\mathfrak{R})$ such that $g_n \to 0$ almost everywhere but $\iint_{\mathfrak{R}} g_n$ does not converges to 0 as $n \to \infty$ and

 $\iint_{\Re} |h_n| \to 0 \text{ but } (h_n) \text{ does not converge almost everywhere to } 0$ as $n \to \infty$.