

EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
SPECIAL DEGREE EXAMINATION IN MATHEMATICS -2008/2009
(December, 2010)
Part II
MT 402 - MEASURE THEORY

Answer all questions

Time allowed: 3 hours

1) Let $f:[A, B] \rightarrow \mathfrak{R}$ be a bounded function, where $A, B \in \mathfrak{R}$ and $A<B$.
a. With the usual notations, define the lower Riemann sum $s(f, \Delta)$ and upper Riemann sum $S(f, \Delta)$ of f corresponding to the dissection Δ of $[A, B]$.
b. Suppose that Δ, Δ^{1} and Δ^{11} are dissections of the interval $[A, B]$ and that $\Delta^{\prime} \subseteq \Delta$. Prove the following:

$$
\begin{aligned}
& >s\left(f, \Delta^{\prime}\right) \leq s(f, \Delta) \text { and } S(f, \Delta) \leq S\left(f, \Delta^{\mathrm{l}}\right) \\
& >s\left(f, \Delta^{\prime}\right) \leq S\left(f, \Delta^{11}\right) .
\end{aligned}
$$

c. What do you mean by f is Riemann integrable over $[A, B]$?

Prove that the following conditions are equivalent.
$>f$ is Riemann integrable over $[A, B]$
$>$ Given $\in>0$, there exists a dissection Δ of $[A, B]$ such that $S(f, \Delta)-s(f, \Delta)<\epsilon$.
d. Suppose that f is Riemann integrable over $[A, B]$. Suppose further that $C \in[A, B]$ is such that $f(x)=g(x)$ for every $x \in[A, B]$ except possibly at $x=C$ Prove that g is Riemann integrable and $\int_{A}^{B} f(x) d x=\int_{A}^{B} g(x) d x$.
e. Give an example of a function which is not Riemann integrable.
2) Explain what is meant by a step function on \Re.
a. Let $f \in L(\Re)$. Prove that there exists a sequence $\left(\varphi_{n}\right)$ of step functions such that $\varphi_{n}(x) \rightarrow f(x)$ almost everywhere in \mathfrak{R}, and that

$$
\int_{\Re}\left|f-\varphi_{n}\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

b. If φ is a step function, show that $\int_{y} \varphi(x) \cos k x d x \rightarrow 0$ as $\mathrm{k} \rightarrow \infty$.
c. Hence or otherwise, show that for $f \in L(\mathfrak{R})$,

$$
\int_{\Re} f(x) \cos k x d x \rightarrow 0 \text { as } \mathrm{k} \rightarrow \infty .
$$

3)

a. State the Fubini's theorem in \Re^{2} and use it to prove the following. Let $f \in \mathrm{M}\left(\mathfrak{R}^{2}\right)$ and suppose that one of the integral $\int_{0}^{\infty}\left(\int_{0}^{\infty} f(x, y) \mid d y\right) d x, \int_{0}^{\infty}\left(\int_{0}^{\infty} f(\mathrm{x}, \mathrm{y}) \mid d x\right) \mathrm{dy}$ exists. Prove that $f \in L^{1}\left(\Re^{2}\right)$.
b. Prove that, if $f(x, y)=y e^{-\left(1+x^{2}\right) y^{2}}$, for $(x, y) \in \mathfrak{R}^{2}$ then $\int_{0}^{\infty}\left(\int_{0}^{\infty} f(x, y) d y\right) d x=\int_{0}^{\infty}\left(\int_{0}^{\infty} f(x, y) d x\right) d y$.
Deduce that $\int_{0}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} / 2$.
4) Prove the following: (You may use any convergence theorem.)
a. $\int_{0}^{\infty} e^{-\alpha t} d t=1 / \alpha$, where $\alpha>0$
b. $\int_{0}^{\infty} e^{-\alpha t} \cos \beta t d t=\frac{\alpha}{\alpha^{2}+\beta^{2}}$, where $\alpha, \beta>0$
c. $\int_{0}^{\infty} \frac{\sin a t}{e^{t}-1} d t=\sum_{n=1}^{\infty} \frac{a}{a^{2}+n^{2}}$ where $\mathrm{a}>0$.
5)
a. State the Monotone Convergence Theorem and Dominated Convergence theorems in $L(I)$.
b. Suppose that $I=[A, \infty)$, where $A \in \mathfrak{R}$. Suppose further that the function $f: I \rightarrow \Re$ satisfies the following conditions:

- $f \in L([A, B])$ for every real number $B \geq A$.
- There exists a constant $M>0$ such that $\int_{A}^{B} f(x) \mid d x \leq M$ for every real number $B \geq A$.
Prove that
$f \in L(I)$, the limit $\operatorname{Lim}_{B \rightarrow \infty} \int_{A}^{B} f(x) d x$ exists and $\int_{A}^{\infty} f(x) d x=\operatorname{Lim}_{B \rightarrow \infty} \int_{A}^{B} f(x) d x$.
c. Let $f:[0, \infty) \rightarrow \Re$ be defined by $f(x)=n^{-1} \sin \pi x$, for every $x \in[n-1, n)$. Prove the following:
- $\operatorname{Lim}_{B \rightarrow \infty} \int_{0}^{B} f(x) d x=\frac{2 \log 2}{\pi}$;
- $\int_{0}^{B}|f(x) d x|$ is not bounded as $B \rightarrow \infty$;
- $f \notin L([0, \infty))$.

6) Prove the following:
a. Every open set $G \subseteq \mathfrak{R}$ is a countable union of pair wise disjoint open intervals in \Re.
b. Suppose that $I \subseteq \Re$ is an interval and that $f: I \rightarrow \Re$ is given. If there exists a sequence $\left(f_{n}\right)$ in $M(I)$, the set of all measurable functions on I, such that $f_{n}(x) \rightarrow f(x)$ as $\mathrm{n} \rightarrow \infty$ for almost all $x \in I$, then $f \in M(I)$.
c. A subset S of \mathfrak{R} has measure zero if and only if the following two conditions are satisfied:

- $\Psi_{S} \in L(\mathfrak{R})$; and
- $\int_{\Re} \Psi_{S}(x) d x=0$.
d. There exist sequences $\left(g_{n}\right),\left(h_{n}\right)$ in $L(\Re)$ such that $g_{n} \rightarrow 0$ almost everywhere but $\int_{\Re}\left|g_{n}\right|$ does not converges to 0 as $n \rightarrow \infty$ and $\int_{\Re}\left|h_{n}\right| \rightarrow 0$ but $\left(h_{n}\right)$ does not converge almost everywhere to 0 as $n \rightarrow \infty$.

