EASTERN UNIVERSITY, SRI LANKA
SECOND EXAMINATION IN SCIENCE - 2002/2003
(APRIL/MAY 2004)

PH 204 MECHANICS II

Time: 01 hour.
Answer ALL Questions
(i) Starting from conservation of linear momentum, show that the general equation of motion for a rocket is

$$
F=M \frac{d v}{d t}+C \frac{d M}{d t}
$$

where M is the total mass of the rocket and pay load, C is the exhaust velocity and F is the external force acting on the rocket.
(ii) Show that the final velocity increment of a two stage rocket, when all fuel has been burnt is

$$
V=-C \log \left[1-\frac{\varepsilon M_{1}}{M_{2}+p}\right]+C \log \left[1-\frac{\varepsilon M_{1}}{M_{1}+M_{2}+p}\right]
$$

where M_{1} is the mass of the first stage rocket, M_{2} is the mass of the second stage rocket, p is the mass of the payload and ε is the ratio of the initial fuel mass to initial rocket mass.

State the Newton's law of gravitation. Using this law
(i) Find the variation of gravitational acceleration (g) with lattitude.
(ii) Find the radius of the orbit for a earth satellite.
(iii) Find the escape velocity of a particle from the earth surface.

An object is thrown with an initial velocity v from the earth surface. Using the Newton's law of gravitation show that the particle attains a maximum height h given by

$$
h=\frac{R_{e} v^{2}}{\left(2 g R_{e}-v^{2}\right)}
$$

where R_{e} is the radius of the earth.

