

MT 403 - ALGEBRAIC TOPOLOGY

Answer all questions.

Time allowed: Three hours

IBRA

- (a) Prove that a topological space (X, T) is compact if and only if every collection of closed subsets of X with the finite intersection property has a non-empty intersection. [40 marks]
 - (b) Prove that every compact topological space has the Bolzano-Weierstrass property, that is every infinite subset of the space has a limit point. [20 marks]
 - (c) Prove the following:

i. Any continuous image of a compact space is compact.

[20 marks]

ii. Any closed subspace of a compact space is compact.

[20 marks]

2. (a) Prove that any compact subset of a Hausdorff space is closed.

[25 marks]

- (b) Let f and g be continuous functions of a topological space (X, T) into a Hausdorff space (Y, V). Prove that the set {x ∈ X : f(x) = g(x)} is a closed subset of X.
- (c) Let (X, T) be a Hausdorff space and let f be a continuous function of X into itself. Prove that the set of fixed points under f is a closed set.
 [30 marks]
- (d) Let K be a compact subset of a Hausdorff space X and suppose that p is a point in the complement of K. Show that there are disjoint open sets U and V with $p \in V$ and $K \subset U$. [15 marks]

3. (a) Let α be an equivalence class of paths with initial point x and terminal point y. Show that

 $\varepsilon_x \cdot \alpha = \alpha$ and $\alpha \cdot \varepsilon_y = \alpha$,

where ε_* is the equivalence class of the constant paths of I into *.

[30 marks]

(b) If X is a path-connected space, then prove that the groups $\pi(X, x)$ and $\pi(X, y)$ are isomorphic for any pair of points $x, y \in X$.

[30 marks]

- (c) Prove that the image of a path-connected space under a continuous map is path-connected. [20 marks]
- (d) Let $\{Y_i : i \in I\}$ be a collection of path-connected subsets of a space X. If $\bigcap_{i \in I} Y_i \neq \phi$, then show that $Y = \bigcup_{i \in I} Y_i$ is path-connected.

[20 marks]

4. (a) Prove that a space X is simply connected if and only if there is a unique homotopy class of paths connecting any two points in X.

[30 marks]

- (b) Prove that $\pi(X \times Y)$ is isomorphic to $\pi(X) \times \pi(Y)$ if X and Y are path-connected. [40 marks]
- (c) If a space X retracts onto a subspace A, then show that the homomorphism $i_* : \pi(A, x_0) \rightarrow \pi(X, x_0)$ induced by the inclusion $i : A \rightarrow X$ is injective. If A is a deformation retract of X, then show that i_* is an isomorphism. [10 marks]
- (d) Show that the map $\beta_h : \pi(X, x) \longrightarrow \pi(X, x_0)$ defined by $\beta_h[f] = [h.f.\bar{h}]$ is an isomorphism. [20 marks]
- 5. (a) If X is a simple point space, then prove that $H_0(X) \cong \mathbb{Z}$ and $H_n(X) = 0$ for n > 0. [20 marks]
 - (b) If X is a non-empty path-connected space, then prove that $H_0(X) \cong \mathbb{Z}$. [40 marks]
 - (c) Prove the following:

a service line

i. $\partial f_{\#} = f_{\#}\partial$, ii. $\partial \partial = 0$,

[10 marks] [30 marks] where ∂ is the boundary operator from $S_n(X)$ to $S_{n+1}(X)$ with $S_n(X)$ being the set of singular *n*-chains in X and $f_{\#}$ is a function from $S_n(X)$ to $S_n(Y)$ for a continuous map $f: X \to Y$.

- 11 FEF 2011
- 6. (a) Let (\widetilde{X}, ρ) be a covering space of $X, \ \widetilde{x_0} \in \widetilde{X}$ and $x_0 = \rho(\widetilde{x_0})$. Prove that for any path $f: I \longrightarrow X$ with initial point x_0 , there exists a unique path $g: I \longrightarrow \widetilde{X}$ with initial point $\widetilde{x_0}$ such that $\rho.g = f.$ [20 marks]
 - (b) Let (X̃, ρ) be a covering space of X and let g₀, g₁ : I → X̃ be paths in X̃ which have the same initial point. If ρ.g₀ ~ ρ.g₁, then show that g₀ ~ g₁. Also show that g₀ and g₁ have the same terminal point. [40 marks]
 - (c) Let $(\widetilde{X}_1, \rho_1)$ and $(\widetilde{X}_2, \rho_2)$ be covering spaces of X and let ϕ be a homomorphism of the first covering space into the second. Then show that (\widetilde{X}_1, ϕ) is a covering space of \widetilde{X}_2 . [40 marks]