EASTERN UNIVERSITY, SRTYANKA, SMI
 DEPARTMENT OF MATHEMATTGS

SPECIAL DEGREE EXAMINATION IN MATHEMATICS
 ACADEMIC YEAR - 2008/2009 (December, 2010)
 Part II
 MT 403 - ALGEBRAIC TOPOLOGY

Answer all questions.
Time allowed: Three hours

1. (a) Prove that a topological space (X, \mathcal{T}) is compact if and only if every collection of closed subsets of X with the finite intersection property has a non-empty intersection.
[40 marks]
(b) Prove that every compact topological space has the Bolzano-Weierstrass property, that is every infinite subset of the space has a limit point.
[20 marks]
(c) Prove the following:
i. Any continuous image of a compact space is compact.
[20 marks]
ii. Any closed subspace of a compact space is compact.
[20 marks]
2. (a) Prove that any compact subset of a Hausdorff space is closed.
[25 marks]
(b) Let f and g be continuous functions of a topological space (X, \mathcal{T}) into a Hausdorff space (Y, \mathcal{V}). Prove that the set $\{x \in X: f(x)=$ $g(x)\}$ is a closed subset of X.
[30 marks]
(c) Let (X, \mathcal{T}) be a Hausdorff space and let f be a continuous function of X into itself. Prove that the set of fixed points under f is a closed set.
[30 marks]
(d) Let K be a compact subset of a Hausdorff space X and suppose that p is a point in the complement of K. Show that there are disjoint open sets U and V with $p \in V$ and $K \subset U$. [15 marks]
3. (a) Let α be an equivalence class of paths with initial point x and terminal point y. Show that

$$
\varepsilon_{x} \cdot \alpha=\alpha \quad \text { and } \quad \alpha \cdot \varepsilon_{y}=\alpha,
$$

where ε_{*} is the equivalence class of the constant paths of I into $*$.
[30 marks]
(b) If X is a path-connected space, then prove that the groups $\pi(X, x)$ and $\pi(X, y)$ are isomorphic for any pair of points $x, y \in X$.
[30 marks]
(c) Prove that the image of a path-connected space under a continuous map is path-connected.
[20 marks]
(d) Let $\left\{Y_{i}: i \in I\right\}$ be a collection of path-connected subsets of a space X. If $\cap_{i \in I} Y_{i} \neq \phi$, then show that $Y=\bigcup_{i \in I} Y_{i}$ is path-connected.
[20 marks]
4. (a) Prove that a space X is simply connected if and only if there is a unique homotopy class of paths connecting any two points in X.
[30 marks]
(b) Prove that $\pi(X \times Y)$ is isomorphic to $\pi(X) \times \pi(Y)$ if X and Y are path-connected. [40 marks]
(c) If a space X retracts onto a subspace A, then show that the homomorphism $i_{*}: \pi\left(A, x_{0}\right) \rightarrow \pi\left(X, x_{0}\right)$ induced by the inclusion $i: A \rightarrow X$ is injective. If A is a deformation retract of X, then show that i_{*} is an isomorphism.
[10 marks]
(d) Show that the map $\beta_{h}: \pi(X, x) \rightarrow \pi\left(X, x_{0}\right)$ defined by $\beta_{h}[f]=$ [h.f. $\bar{h}]$ is an isomorphism.
[20 marks]
5. (a) If X is a simple point space, then prove that $H_{0}(X) \cong \mathbb{Z}$ and $H_{n}(X)=0$ for $n>0$.
[20 marks]
(b) If X is a non-empty path-connected space, then prove that $H_{0}(X) \cong \mathbb{Z}$.
[40 marks]
(c) Prove the following:

$$
\text { i. } \partial f_{\#}=f_{\#} \partial,
$$

[10 marks]
ii. $\partial \partial=0$,
where ∂ is the boundary operator from $S_{n}(X)+S_{n},-1(B) \mathbb{R}_{\text {with }} \mathbb{R}$ $S_{n}(X)$ being the set of singular n-chains in X nd $f_{\#}$ is a function from $S_{n}(X)$ to $S_{n}(Y)$ for a continuous map $: X Y$.
6. (a) Let (\widetilde{X}, ρ) be a covering space of $X, \widetilde{x_{0}} \in$ Prove that for any path $f: I \rightarrow X$ with initial point morsthere exists a unique path $g: I \rightarrow \tilde{X}$ with initial point $\widetilde{x_{0}}$ such that $\rho . g=f$. [20 marks]
(b) Let (\tilde{X}, ρ) be a covering space of X and let $g_{0}, g_{1}: I \rightarrow \tilde{X}$ be paths in \tilde{X} which have the same initial point. If $\rho . g_{0} \sim \rho . g_{1}$, then show that $g_{0} \sim g_{1}$. Also show that g_{0} and g_{1} have the same terminal point.
[40 marks]
(c) Let $\left(\widetilde{X_{1}}, \rho_{1}\right)$ and $\left(\widetilde{X_{2}}, \rho_{2}\right)$ be covering spaces of X and let ϕ be a homomorphism of the first covering space into the second. Then show that $\left(\widetilde{X_{1}}, \phi\right)$ is a covering space of $\widetilde{X_{2}}$.
[40 marks]

