

11 FEP 201

LIDNAR

EASTERN UNIVERSITY, SRI DANKA DEPARTMENT OF MATHEMATICS SPECIAL DEGREE EXAMINATION IN MATHEMATICS ACADEMIC YEAR - 2008/2009 (December, 2010) Part II MT 407 - RING THEORY

Answer all questions.

Time allowed: Three hours

1.	. (a) Prove that a field has no non-zero proper ideals.	[20 Marks]
	(b) Prove that if a commutative ring with unity has proper ideal, then it is a field.	no non-zero [20 Marks]
	(c)) Let R be a commutative ring with unity. Prove the fo	ollowing.
		i. If M is a maximal ideal of R, then R/M is a field	l.
		 ii. If P is a prime ideal of R if and only if R/P is an main. iii. Every maximal ideal is a prime ideal. 	[35 marks] integral do- [20 Marks] [05 Marks]
2.	(a)	Show that every finite integral domain is a field.	[30 Marks]
	(b)	An element a of a ring R is called <i>nilpotent</i> if $a^n = n \in \mathbb{N}$. Show that the zero element is the only nilpote in an integral domain.	0 for some
	(c)	If R is a ring with no zero divisors, then show that the $ax = b$ with $a \neq 0$ has at most one solution in R.	e equation [20 Marks]
	(d)	Let $\Phi : R \longrightarrow R'$ be a homomorphism between rings Prove the following:	R and R' .
		 i. If I is an ideal of R, then Φ(I) is an ideal of Φ(R). ii. If R is a ring with unity and Φ(1) ≠ 0', then Φ(1) i of the ring Φ(R). 	[20 Marks] s the unity [15 Marks]
3.	(a)	Prove that every strictly ascending chain of ideals in a Ideal Domain (PID) is of finite length, that is the ascen condition (ACC) holds for ideals in a PID.	a Principal ding chain [30 Marks]
	(b)	Let D be a PID. Show that every element that is neith unit in D is a product of f	er 0 nor a [30 Marks]

(c) Prove that every PID is a Unique Factorization Domain (UFD).

[30 marks]

(d) Show that the integral domain \mathbb{Z} is a UFD.

[10 Marks]

4. Let F be a field.

BRA

- (a) State and prove the Division Algorithm for F[x]. [40 Marks]
- (b) Show that a non-zero polynomial $f(x) \in F[x]$ of degree n can have at most n zeros in F. (30 Marks)
- (c) Show that every ideal in F[x] is principal. Hence deduce that F[x] is a principal ideal domain (PID). [30 Marks]
- 5. (a) Let $\Phi: M \rightarrow N$ be a module homomorphism. Prove that Φ is a **monomorphism** if and only if the kernal of Φ is the zero ideal.

[30 marks]

- (b) Let R be a ring with identity and let M be a left R-module. Let I be an ideal of R such that am = 0 for all a ∈ I and all m ∈ M. Show that M is a left (R/I)-module by an action defined by (r + I).m = rm.
 [30 Marks]
- (c) Let R be a ring with identity and let M be a left R-module. Prove the following:
 - i. If M is a Notherian left R-module, then every non-empty set of left R- submodules of M contains a maximal element under inclusion. [20 Marks]
 - ii. If every left R-submodule of M is finitely generated, then show that M is a Notherian left R-module. [20 Marks]

6. Let R be a ring with identity.

- (a) Prove that the *R*-module *M* is the direct sum of the family of sub-modules N_i, i ∈ I if and only if for any family of homomorphism Φ_i : N_i → M' of the *R*-modules N_i, i ∈ I into an *R*-module M', there exists a unique homomorphism Φ : M → M' which extends each Φ_i, that is for which Φ_i = Φ ∘ η_i, i ∈ I with η_i the inclusion of N_i in M. [40 Marks]
- (b) If the subset X of the R-module M is such that every mapping of X into any R-module M' extends uniquely to a homomorphism of M into M', then show that X is a basis on M. [40 Marks]
- (c) If X is a basis of the free R-module M, then show that every mapping X into any R-module M' can be extended in one and only one way to a homomorphism of M into M'. [20 Marks]