

SPECIAL DEGREE EXAMINATION IN MATHEMATICS
 ACADEMIC YEAR - 2008/2009 (December, 2010)
 Part II
 MT 408 - RELATIVITY

Time allowed: Three hours

1. In two spacetime dimensions two observers moving with constant relative velocity v set up coordinate system $(c t, x)$ and $\left(c t^{\prime}, x^{\prime}\right)$ respectively. Show that if they set their clocks to $t=t^{\prime}=0$ when pass each other, the transform between these coordinate systems is the Lorentz transform:

$$
\binom{c t}{x}=\gamma\left(\begin{array}{cc}
1 & \frac{v}{c} \\
\frac{v}{c} & 1
\end{array}\right)\binom{c t^{\prime}}{x^{\prime}}, \text { where } \gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}
$$

Let K and K^{\prime} be two inertial frames such that the origin of K^{\prime} moves with relative speed v in the x-direction.
(a) In K a rod at rest has length l_{0}. What is the length of the rod in K^{\prime} ?
(b) Let A and B be two simultaneous events in K and suppose A is at $(0,0)$ and B is at $(0, x)$ where $x \neq 0$. Show that A and B are not simultaneous in K^{\prime}.
(c) Show that a particle moving with the speed of light along the x-direction in K also moves at the speed of light in K^{\prime}.
2. (a) A body with rest mass m disintegrates at rest into two parts with rest mass m_{1} and m_{2}. Show that the energies of the two parts are

$$
E_{1}=c^{2} \frac{m^{2}+m_{1}^{2}-m_{2}^{2}}{2 m}, \quad E_{2}=c^{2} \frac{m^{2}+m_{2}^{2}-m_{1}^{2}}{2 m}
$$

(b) A photon with energy $E=h \nu$ collides with an electron of mass m which is initially at rest. After the collision the photon is scattered by an angle θ with energy $E^{\prime}=h \nu^{\prime}$, while the electron moves off at an angle ϕ to the photon's original path.
i. Show that

$$
\lambda^{\prime}-\lambda=\frac{2 h}{m c} \sin ^{2} \frac{\theta}{2},
$$

where λ and λ^{\prime} are the wavelength of the photon before and after collision.
ii. Show that

$$
\tan \phi=\frac{\cot \frac{\theta}{2}}{1+\frac{h \nu}{m c^{2}}}
$$

3. (a) Show that the Riemann tensor

$$
R_{a b c}^{d}=\Gamma^{d}{ }_{a c, b}-\Gamma^{d}{ }_{a b, c}+\Gamma^{e}{ }_{a 0} \Gamma^{d}{ }_{e b}-\Gamma_{a b}^{e} \Gamma^{d}{ }_{c c}
$$

arises from the equation

$$
V_{a ; b c}-V_{a ; c b}=R_{a b c}^{d} V_{d}
$$

(b) Using the Bianchi identity

$$
R_{b c d ; e}^{a}+R^{a}{ }_{b d e ; c}+R_{b e c ; d}^{a}=0
$$

show that $G^{a b}{ }_{; b}=0$.
(c) Prove the following:
i. $R^{a}{ }_{b c d}+R^{a}{ }_{c d b}+R^{a}{ }_{d b c}=0$;
ii. $k_{a ; b c}=R_{a b c d} k^{d}$ if $k_{a ; b}+k_{b ; a}=0$.
4. (a) Show that in a 2-dimensional Riemannian manifold all components of $R_{\text {abcd }}$ are either zero or $\pm R_{1212}$.
(b) In terms of the usual polar angles, the metric tensor field of a sphere of radius a is given by

$$
\left[g_{a b}\right]=\left[\begin{array}{ll}
a^{2} & 0 \\
0 & a^{2} \sin ^{2} \theta
\end{array}\right]
$$

Show that $R_{1212}=a^{2} \sin ^{2} \theta$ and deduce that

$$
\left[R_{a b}\right]=\left[\begin{array}{rl}
-1 & 0 \\
0 & -\sin ^{2} \theta
\end{array}\right]
$$

also establish that $R=-2 / a^{2}$.
5. Use the Euler-Lagrange equations to obtain the geodesic equations and hence show that the only non-vanishing Ricci tensors are given by

$$
\begin{aligned}
& R_{00}=\frac{A^{\prime \prime}}{2 B}-\frac{A^{\prime}}{4 B}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)+\frac{A^{\prime}}{r B} \\
& R_{11}=-\frac{A^{\prime \prime}}{2 A}+\frac{A^{\prime}}{4 A}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)+\frac{B^{\prime}}{r B} \\
& R_{22}=-\frac{1}{B}+1-\frac{r}{2 B}\left(\frac{A^{\prime}}{A}-\frac{B^{\prime}}{B}\right) \\
& R_{33}=R_{22} \sin ^{2} \theta
\end{aligned}
$$

for the line element of a spherically symmetric spacetime

$$
d s^{2}=-A(r) d t^{2}+B(r) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

6. (a) Using the result obtained in question 5, generate the exterior Schwarzschild solution

$$
d s^{2}=-c^{2}\left(1-\frac{2 G M}{c^{2} r}\right) d t^{2}+\left(1+\frac{2 G M}{c^{2} r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

clearly stating all results used.
(b) Given the equations for a particle

$$
\begin{aligned}
\left(1-\frac{2 m}{r}\right) \dot{t} & =k \\
r^{2} \dot{\phi} & =h \\
c^{2}\left(1-\frac{2 m}{r}\right) \dot{t}^{2}-\left(1-\frac{2 m}{r}\right)^{-1} \dot{r}^{2}-r^{2} \dot{\phi}^{2} & =c^{2}
\end{aligned}
$$

show that the following results hold in vertical free fall:

$$
\begin{aligned}
k & =\sqrt{1-2 m / r_{0}} \\
\ddot{r}+G M \frac{1}{r^{2}} & =0 \\
\frac{1}{2} \dot{r}^{2} & =M G\left(\frac{1}{r}-\frac{1}{r_{0}}\right)
\end{aligned}
$$

where r_{0} is the point of release of the particle.

