## EASTERN UNIVERSITY, SRI LANKA

## SPECIAL DEGREE EXAMINATION IN SCIENCE - 2009/10

## FIRST SEMESTER

(May 2010)

## PH 401 ELECTROMAGNETIC THEORY AND WAVES

me: 03 Hours.
iswer ALL Questions
iu may assume the following.
ctor equations:
$(f \vec{A})=f(\vec{\nabla} \cdot \vec{A})+\vec{A}(\vec{\nabla} f)$
$\times(f \vec{A})=(\vec{\nabla} f) \times \vec{A}+f(\vec{\nabla} \times \vec{A})$
$(\vec{A} \times \vec{B})=\vec{B} \cdot(\vec{\nabla} \times \vec{A})-\vec{A} \cdot(\vec{\nabla} \times \vec{B})$
$\times(\vec{A} \times \vec{B})=\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\nabla^{2} \vec{A}$
auss divergence theorem:

$$
\oint_{S} \vec{A} \cdot d \vec{a}=\int_{V} \vec{\nabla} \cdot \vec{A} d \tau
$$

:okes's theorem:

$$
\oint_{C} \vec{A} \cdot d \vec{l}=\int_{S}(\vec{\nabla} \times \vec{A}) \cdot d \vec{a}
$$

, $=8.85 \times 10^{-12} \mathrm{Fm}^{-1}$ and $\mu_{o}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$

1. State Gauss Theorem in Electrostatics.
(i) A spherical charge distribution of radius R has a constant vol charge density $\rho$.
(a)Calculate the electric field $\mathrm{E}(r)$ produced by the chi distribution when:

$$
\text { i. } \quad r<R \quad \text { ii. } \quad r=R \quad \text { iii. } \quad r>R
$$

where $r$ is the distance from the centre of the sphere.
(b) Show that the electric potential $\varphi(r)$ inside the chi distribution when $r<R$ is:

$$
\varphi(r)=\frac{\rho}{6 \varepsilon_{o}}\left(3 R^{2}-r^{2}\right)
$$

(c) Find the electrostatic energy of the sphere.
(ii) If the electric charge with volume charge density $\rho(r)=\alpha+$ distributed in a spherical shell of inner radius $R_{1}$ and outer ra $R_{2}$, find the expression for the electric field when,

$$
\text { i. } \quad r<R_{1} \quad \text { ii. } \quad R_{1}<r<R_{2} \quad \text { iii. } \quad r>R_{2}
$$

Assume $r$ is the distance from the center of the spherical shell.
2. Show that in a dielectric material, the bound surface charge der $\sigma_{b}$ and bound volume charge density $\rho_{b}$ are given by $\sigma_{b}=\vec{P} \cdot \vec{n}$ $\rho_{b}=-\vec{\nabla} . \vec{P}$
Also show that the displacement vector can be written as: $\vec{D}=\varepsilon_{0} \vec{E}$. The symbols have their usual meanings.

A spherical conducting shell has inner radius $R_{1}$ and outer radius The volume between the spherical surfaces is filled with a med having absolute permittivity,

$$
\varepsilon(r)=\frac{\varepsilon_{0}}{1+\lambda r}
$$

where $\lambda$ is a constant and $r$ is the radial coordinate. A charge Q is placed on the inner surface and the outer surface is grounded. Find:
(i) The electric field $\vec{E}(r)$ in the region $R_{1}<r<R_{2}$

(ii) The displacement vector $\vec{D}(r)$ in the region $R_{1}<r<R_{2}$
(iii) The potential differences between the spherical surfaces.
(iv) Polarization vector $\vec{P}(r)$ in the region $R_{1}<r<R_{2}$
(v) Bound volume charge density.
(vi) Bound surface charge density at $r=R_{1}$ and $r=R_{2}$

A charge of $10 \mu C$ exists in a spherical dielectric of relative permittivity $\varepsilon_{r}=4.5$. Determine the total energy contained in the electric field outside a radial distance of 10 cm .
3. State Ampere's Circuital Law. Using this law find the magnetic field produced by a uniform current I flowing through a non magnetic hollow cylindrical conductor with inner radius $a$ and outer radius $b$ for the following cases:
(i) $r<a$ (ii) $a<r<b$ (iii) $r>b$
where $r$ is the distance from the axis of the cylinder.
If the current density J varies with $r$ according to

$$
J(r)=\frac{k}{r^{2}}
$$

show that the total current flowing in the conductor is:

$$
I=2 \pi k \ln \frac{b}{a} \quad \text { where } k \text { a constant. }
$$

4. 

(i) Starting from Gauss theorem in Electrostatics derive first Maxwell's equation.

$$
\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}
$$

(ii) Starting from Biot-Savart law for magnetic field derive secon Maxwell's equation:

$$
\vec{\nabla} \cdot \vec{B}=0^{\dot{\circ}}
$$

(iii) Starting from Faradays law of electromagnetic induction deri third Maxwell's equation:

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

(iv) Starting from the Ampere's circuital law derive the fourth Maxwell's equation:

$$
\vec{\nabla} \times \vec{B}=\mu_{o}\left(\vec{J}+\varepsilon_{o} \frac{\partial \vec{E}}{\partial t}\right)
$$

The symbols have their usual meanings.
5. Starting from Maxwell's equation in dielectric medium where $\rho=0$ $J=0$, show that the electric field E satisfies the wave equation:

$$
\nabla^{2} \vec{E}-\varepsilon \mu \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0
$$

where $\varepsilon, \mu$ have their usual meanings and constants.
Consider a plane electric field in a dielectric medium parallel to X -ax and propagating along Z -axis.

$$
\vec{E}=E_{0} \hat{\vec{x}} \exp i(\omega t-k z)
$$

where $E_{0}, \omega$ and $k$ are constants.
(i) Using the Maxwell's equation show that in a dielectric medium $\vec{H}$ field is given by: $\vec{H}=\sqrt{\frac{\varepsilon}{\mu}}(\hat{\vec{Z}} \times \vec{E})$
(ii) A plane electric field travelling in a perfect dielectric medium is given by: $\quad E_{X}(z, t)=10 \cos \left(2 \pi \times 10^{7} t-\frac{\pi}{10} z\right) \mathrm{Vm}^{-1}$
(a)Determine the velocity of propagation
(b) Find the associated Magnetic field intensity H if $\mu=\mu_{o}$
6. The electric field ${ }^{*} \vec{E}$ in a matter satisfies the following equation,

$$
\nabla^{2} \vec{E}=\mu \sigma \frac{\partial \vec{E}}{\partial t}+\varepsilon \mu \frac{\partial^{2} E}{\partial t^{2}}
$$

where the symbols have their usual meanings

(i) Consider the solution of the above wave equation as

$$
\vec{E}=\vec{E}_{0} e^{i(\omega t-k z)}
$$

(a) Show that $k$ and $\omega$ satisfy the dispersion relation:

$$
k^{2}=\omega^{2} \mu \varepsilon-i \omega \mu \sigma
$$

(b) Show that the skin depth $z_{0}$ in a conductor is given by

$$
z_{0}=\sqrt{\frac{2}{\mu \omega \sigma}}
$$

(ii) When the electric wave is travelling in an ionized gas where $\varepsilon=\varepsilon_{o}$ and $\mu=\mu_{o}$
(a) Show that the dispersion relation becomes

$$
k^{2}=\varepsilon_{o} \mu_{0} \omega^{2}\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)
$$

and the symbols have their usual meanings.
(b) Determine the refractive index of the medium.

