EASTERN UNIVERSITY, SR LANKA

SPECIAL DEGREE EXAMINATION IN SCIENCE - 2009/10

FIRST SEMESTER

(May 2010)

PH 415 Particle Physics

Time: 02 Hours.
Answer ALL Questions

1. Describe briefly the function of a linear accelerator and give a brief account of the mechanisms of radial focussing and phase focussing in linear accelerators.

An experimentalist conducts an experiment to create π^{+}mesons by striking a target of stationary protons by a beam of protons emerging from a linear accelerator. What is the minimum kinetic energy needed for the proton beam emerging from the linear accelerator to produce π^{+}mesons?

You may find the following information with usual notation useful:
(i) $\mathrm{p}+\mathrm{p} \rightarrow \mathrm{d}+\pi^{+}$
(ii) $M_{p}=938.8 \mathrm{MeV} / \mathrm{c}^{2}, \mathrm{M}_{\mathrm{d}}=1876.0 \mathrm{MeV} / \mathrm{c}^{2}$ and $\mathrm{M}_{\pi^{+}}=140$ $\mathrm{MeV} / \mathrm{c}^{2}$
2. (a) Give the charge Q, baryon number B, isospin I, third component of the isospin I_{3} and strangeness S of u, d and s quarks. Explain why each of the following particles cannot exist according to the quark model:
(i) A meson of spin $1 / 2$.
(ii) A baryon of electric charge -2.
(iii) A baryon with charge +1 and strangeness -2
(iv) A meson with charge +1 and strangeness -1
(b) What are the quark contents of particles $p, n, \Sigma^{+}, \Sigma^{0}, \Sigma-\Lambda^{0}, \Xi$ and Ξ ?
(i) Give the isospin, third component of the isospin strangeness and hyper charge of the above particles.
(ii) Arrange these particles in a diagram according to their hypercharge and third component of isospin.
(c) The Δ^{-}is a spin $3 / 2$ baryon consisting of 3 d-quarks with no relative orbital angular momentum. Explain why the application of the quark model to baryons requires the introduction of a new quantum number, called colour quantum number.
3. (a) Indicate, giving reasons, whether the following interactions proceed through strong, electromagrietic or weak interactions or forbidden.

$$
\begin{array}{ll}
\text { (i) } & \Lambda^{0} \rightarrow p+\pi^{-} \\
\text {(ii) } & \pi^{-}+\Sigma^{+} \rightarrow \Omega^{-}+K^{+} \\
\text {(iii) } & \pi^{-}+p \rightarrow K^{+}+\Sigma^{-} \\
\text {(iv) } \gamma+p \rightarrow n+\pi^{+}
\end{array}
$$

(b) Draw the Feynman diagrams for the following processes:
(i) $\Delta^{++} \rightarrow p+\pi^{+}$
(ii) $\pi^{-}+p \rightarrow K^{o}+\Sigma^{0}$
(iii) $\pi^{-} \rightarrow \mu^{-}+\bar{v}_{\mu}$
(c) The Δ^{+}particles decay through the following strong interaction decay modes:
(i) $\Delta^{+} \rightarrow \mathrm{p}+\pi^{0}$
(ii) $\Delta^{+} \rightarrow \mathrm{n}+\pi^{+}$

Identify the branching ratio, $\frac{\sigma\left(\Delta^{+} \rightarrow n \pi^{+}\right)}{\sigma\left(\Delta^{+} \rightarrow p \pi^{0}\right)}$
You may find the following information useful:

$$
\left|I, I_{3}\right\rangle=\left|\frac{3}{2}, \frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}|1,1\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}|1,0\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle
$$

4. The formula given below can be used to estimate the mass of the members of baryon multiplets.

$$
M(\text { baryons })=m_{1}+m_{2}+m_{3}+A\left\{\frac{s_{1} \cdot \underline{s}_{2}}{m_{1} m_{2}}+\frac{\underline{s}_{2} \cdot \underline{s}_{3}}{m_{2} m_{3}}+\frac{s_{3} \cdot \underline{s}_{1}}{n_{3} m_{1}}\right\} 30 \text { EC } 20
$$

where A is the same for all baryons in the same quantum state and the other symbols have their usual meaning.
(a) Obtain an expression for the mass of a proton. You may assume the masses of u and d quarks are equal to m_{u}.
(b) Obtain an expression for A for a baryon octet with spin $1 / 2$ and even parity in terms of \hbar.
(c) Estimate the mass of the Σ^{0} and Λ^{0} particles.

You may find the following information useful:
(i) Constituent quark masses are $m_{\mathrm{u}}=m_{\mathrm{d}}=310 \mathrm{MeV} / \mathrm{c}^{2}$ and $m_{\mathrm{s}}=483 \mathrm{MeV} / c^{2}$.
(ii) Proton mass $=940 \mathrm{MeV} / \mathrm{c}^{2}$.

