EASTERN UNIVERSITY, SRI LANKA

SPECIAL DEGREE EXAMINATION IN SCIENCE - 2009/10

FIRST SEMESTER

(May 2010)

PH 415 Particle Physics

Time: 02 Hours.

Answer <u>ALL</u> Questions

- HA JODEC 2011 Band An Chaiversity, Sri Lanka.
- 1. Describe briefly the function of a linear accelerator and give a brief account of the mechanisms of radial focussing and phase focussing in linear accelerators.

An experimentalist conducts an experiment to create π^+ mesons by striking a target of stationary protons by a beam of protons emerging from a linear accelerator. What is the minimum kinetic energy needed for the proton beam emerging from the linear accelerator to produce π^+ mesons?

You may find the following information with usual notation useful:

- (i) $p+p \rightarrow d + \pi^+$
- (ii) $M_p = 938.8 \text{ MeV/c}^2$, $M_d = 1876.0 \text{ MeV/c}^2$ and $M_{\pi^+} = 140 \text{ MeV/c}^2$
- 2. (a) Give the charge Q, baryon number B, isospin I, third component of the isospin I_3 and strangeness S of u, d and s quarks. Explain why each of the following particles cannot exist according to the quark model:
 - (i) A meson of spin 1/2.
 - (ii) A baryon of electric charge -2.
 - (iii) A baryon with charge +1 and strangeness -2
 - (iv) A meson with charge +1 and strangeness -1

(b) What are the quark contents of particles $\mathbf{p}, \mathbf{n}, \Sigma^+, \Sigma^0, \Sigma^- \Lambda^0, \Xi^0$ and Ξ^- ?

- (i) Give the isospin, third component of the isospin strangeness and hyper charge of the above particles.
- (ii) Arrange these particles in a diagram according to their hypercharge and third component of isospin.

(c) The Δ^- is a spin 3/2 baryon consisting of 3 d-quarks with no relative orbital angular momentum. Explain why the application of the quark model to baryons requires the introduction of a new quantum number, called colour quantum number.

- 3. (a) Indicate, giving reasons, whether the following interactions proceed through strong, electromagnetic or weak interactions or forbidden.
 - (i) $\Lambda^0 \rightarrow p + \pi^-$ (ii) $\pi^- + \Sigma^+ \rightarrow \Omega^- + K^+$ (iii) $\pi^- + p \rightarrow K^+ + \Sigma^-$ (iv) $\gamma + p \rightarrow n + \pi^+$

(b) Draw the Feynman diagrams for the following processes:

- (i) $\Delta^{++} \rightarrow p + \pi^+$
- (ii) $\pi^- + p \to K^o + \Sigma^o$
- (iii) $\pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}$
- (c) The Δ^+ particles decay through the following strong interaction decay modes:
 - (i) $\Delta^+ \rightarrow p + \pi^0$
 - (ii) $\Delta^+ \rightarrow n + \pi^+$

Identify the branching ratio, $\frac{\sigma(\Delta^+ \to n\pi^+)}{\sigma(\Delta^+ \to p\pi^0)}$

You may find the following information useful:

$$\left|I,I_{3}\right\rangle = \left|\frac{3}{2},\frac{1}{2}\right\rangle = \frac{1}{\sqrt{3}}\left|1,1\right\rangle \left|\frac{1}{2},-\frac{1}{2}\right\rangle + \sqrt{\frac{2}{3}}\left|1,0\right\rangle \left|\frac{1}{2},\frac{1}{2}\right\rangle$$

2

4. The formula given below can be used to estimate the mass of the members of baryon multiplets.

$$M(baryons) = m_1 + m_2 + m_3 + A \left\{ \frac{\underline{s}_1 \cdot \underline{s}_2}{m_1 m_2} + \frac{\underline{s}_2 \cdot \underline{s}_3}{m_2 m_3} + \frac{\underline{s}_3' \cdot \underline{s}_1}{m_3 m_1} \right\} 30 \text{ DEC} 20$$

where A is the same for all baryons in the same quantum state and the other symbols have their usual meaning.

- (a) Obtain an expression for the mass of a proton. You may assume the masses of u and d quarks are equal to m_u .
- (b) Obtain an expression for A for a baryon octet with spin ½ and even parity in terms of ħ.
- (c) Estimate the mass of the Σ^0 and Λ^0 particles.

You may find the following information useful:

- (i) Constituent quark masses are $m_u = m_d = 310 \text{ MeV}/c^2$ and $m_s = 483 \text{ MeV}/c^2$.
- (ii) Proton mass = 940 MeV/c^2 .