EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE (2002/2003 & 2002/2003(A)) SECOND SEMESTER(Feb./Mar.'2004) MT 301 - GROUP THEORY

Answer all questions

Time: Three hours

LIBRAR

- 1. State and prove Lagrange's theorem for a finite group G. [25]
 - (a) In a group G, H and K are different subgroups of order p, p is prime. Show that H ∩ K = {e}, where e is the identity element of G.
 - (b) Prove that in a finite group G, the order of each element divides order of G. Hence prove that x^{|G|} = e, ∀ x ∈ G. [15]
 - (c) Let G be a non-abelian group of order 20. Prove that G contains at least one element of order 5 or 10. [25]
 - (d) Let G be a group of order 27. Prove that G contains a sub group of order 3.

(a)	State and prove the first isomorphism theorem.	[40]
(b)	Let H and K be two normal subgroups of a group G such	that
	$K \subseteq H$. Prove that	
	i. $K \trianglelefteq H$;	[10]
	ii. $H/K \leq G/K;$	[20]
	iii. $\frac{G/K}{H/K} \cong G/H$.	[30]
(a)	Define the following terms as applied to a group G .	
	i. commutator of two elements a, b of G ;	[10]
	ii. commutator subgroup (G') of G ;	[10]
	iii. internal direct product of two subgroups of G .	[10]
(b)	Prove that	
	i. $G' \trianglelefteq G;$	[15]
	ii. G/G' is abelian.	[10]
(c)	i. Let H and K be two subgroups of a group G , prove that	
	$G = H \otimes K$ if and only if	
	A. each $x \in G$ can be uniquely expressed in the form	
	$x = hk$, where $h \in H, k \in K$.	
	B. $hk = kh$ for any $h \in H, k \in K$.	[25]
	ii. Give an example to show that a group cannot always be	ex-
	pressed as the internal direct product of two non-trivial :	nor-
	mal subgroups.	[20]

4. Define the terms "automorphism" and "inner automorphism" of a group G. [10]
Let AutG be the set of all automorphisms of G and let InnG be the set of all inner automorphisms of G.

LIBRAR

[15]

(a) Show that

i.	$\operatorname{Aut} G$ is a group under composition of maps;	[20]
ii.	Inn G is a normal subgroup of $\mathbf{Aut}G$.	[20]

- (b) If H is a subgroup of G, prove that N (H) /Z (H) ≅ InnG, [20] Hence deduce that G/Z(G) ≅ InnG. [10]
 Where, N(H) = {x ∈ H | xH = Hx} and Z(H) = {a ∈ H | ax = xa ∀x ∈ H}.
- (c) If G = {a, b}, find AutG for each of the binary operations
 "*"and "×" defined by,

i.
$$a * a = a$$
, $a * b = b$, $b * a = b$, $b * b = a$;
ii. $a \times a = a$, $a \times b = b$, $b \times a = a$, $b \times b = b$ [20]

- 5. Define the following terms as applied to a group.
 - * Permutation;
 - * Cycle of order r;
 - * Transposition.

(a) Prove that the permutation group on n symbols (s_n) is a finite group of order n!. [15]
Is it true that s_n is abelian for n > 2? Justify your answer. [15]

- (b) Prove that every permutation in s_n can be expressed as a product of transpositions. [35]
- (c) Prove with the usual notations that $A_n = s_n$ implies n = 1. [20]
- 6. Define the term p-group.
 - (a) Prove that homomorphic image of a p-group is a p-group. [20]

[10]

- (b) Let G be a finite abelian group and p be a prime number such that p is a divisor of the order of G. Prove that G has an element of order p.
- (c) "If G is a finite group, p a prime, and p^r the highest power of p dividing the order of G, then there is a subgroup of G of order p^r ".

Using the above fact or otherwise, prove that a finite group G is a p-group if and only if every element of G has order a power of p. [30]