SECOND SEMESTER

(April/May '2004)

(Re-Repeat)

MT 302- COMPLEX ANALYSIS

Answer five questions only

Time : Three hours

1. (a) Define what is meant by " a complex-valued function f has a limit at $z_{0} \in \mathbb{C} "$.
(b) Show that

$$
\sum_{k=0}^{\infty} z^{k}=\frac{1}{1-z} \quad \text { for } \quad|z|<1
$$

Deduce that if $0<r<1$, then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} r^{n} \cos n \theta=\frac{r \cos \theta-r^{2}}{1-2 r \cos \theta+r^{2}} \\
& \sum_{n=1}^{\infty} r^{n} \sin n \theta=\frac{r \sin \theta-r^{2}}{1-2 r \cos \theta+r^{2}}
\end{aligned}
$$

2. (a) What is meant by saying that a complex-valued function f, defined on a domain $D(\subseteq \mathbb{C})$, is analytic at a point $z_{0} \in D$. Show that if $z=x+i y$ and a function $f(z)=u(x, y)+i v(x, y)$ is
analytic at $z_{0}=x_{0}+i y_{0}$, then the equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

are satisfied at every point of some neighbourhood of z_{0}.
(b) Prove that the function $u(x, y)=3 x^{2} y+2 x^{2}-y^{3}-2 y^{2}$ is harmonic.

Find a function $v(x, y)$ such that $f(z)=u(x, y)+i v(x, y)$ is analytic.
3. Let $M>0$ be such that $|f(z)| \leq M$ for all z on a contour C and l be the length of C.

Show that

$$
\left|\int_{C} f(z) d z\right| \leq M l
$$

Hence show that

$$
\left|\int_{C} \frac{z^{1 / 2}}{z^{2}+1} d z\right| \leq \frac{3 \sqrt{3}}{8} \pi
$$

where C is the semi circular path given by $z=3 e^{i \theta}, \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
4. Let f be analytic everywhere within and on a simple closed contour C, taken in the positive sense. If z_{0} is any point interior to C, then prove that

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z
$$

Prove that if $f(z)$ is analytic inside and on the circle C if radius r with centre at $z=z_{0}$, then

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{M n!}{r^{n}}, \quad n=0,1,2, \cdots
$$

where M is a positive constant such that $|f(z)| \leq M$ for all z inside and on C.
5. Prove or disprove each of the following statements. Justify youswer.
(a) If $f(z)$ and $\overline{f(z)}$ are analytic functions in a domain D, then $f(z)$ is a constant in D.
(b) The function $f(z)=\frac{1}{z}$ is uniformly continuous in $|z|<1$.
(c) Every polynomial of degree n with complex coefficients, has exactly n zero.
(d) The function $f: \mathbb{C} \longrightarrow \mathbb{C}$ defined by $f(z)=|z|^{2}$, has derivative at each point in \mathbb{C}.
6. (a) Let f be a complex-valued function and $z_{0} \in \mathbb{C}$. Explain what is meant by each of the following statements:
(i) f has a pole of order m at z_{0};
(ii) residue of f at z_{0}.
(b) Show that if f is analytic inside and on a simple closed contour C and f has a pole of order m at $z=\alpha$ then the residue of f at $z=\alpha$ is given by

$$
\lim _{z \rightarrow \alpha} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left\{(z-\alpha)^{m} f(z)\right\}
$$

7. (a) State and prove the Argument Theorem.
(b) (i) If $f(z)$ and $g(z)$ are analytic inside and on a simple closed curve C and if $|g(z)|<|f(z)|$ on C, then show that both functions $f(z)+g(z)$ and $f(z)$ have the same number of zeros inside C.
(ii) Show that all the roots of $2 z^{5}-z^{3}+z+7=0$ lie between the circles $|z|=1$ and $|z|=2$.
8. (a) State the Residue Theorem.
(b) Find the value of the integral

$$
\oint_{C} \frac{3 z^{2}+2}{(z-1)\left(z^{2}+9\right)} d z
$$

where C is taken counter clockwise around the circle
(i) $|z-2|=2$;
(ii) $|z|=4$.

