

SPECIAL DEGREE EXAMINATION IN CHEMISTRY

2008/2009 (NOVEMBER 2011)

CH401 Advanced Inorganic Chemistry I

Answer all questions

Time: 02 hours

- 1. Answer all parts (a), (b), (c), (d) and (e)
- a) Identify the point groups of the following molecules.
 - i. Hexachlorobenzene
 - ii. trans-1,2 dichloroethylene
 - iii. Ammonia

(30 Marks)

- b) Explain the following terms with suitable example
 - i. Symmetry operation
 - ii. Symmetry elements

(10 Marks)

- c). Find all the axes of symmetry in the following molecules.
 - i. NH2Cl
 - ii. CO32-
 - iii. BF₃

(30 Marks)

- d). Show diagrammatically the location of all the rotation axis/axes of symmetry in the following molecules.
 - i. p-dichlorobenzene
 - ii. m-dichlorobenzene

(20 Marks)

e) Write down all symmetry operation corresponding to the H₂O molecule. By set up its multiplication table show that it constitutes a group using matrix algebra.

(10 Marks)

2. Answer all parts (a), (b) and (c).	
a) i) Derive the spectroscopic term symbols for P ² configuration.	
ii) Deduce the term symbol for the ground state of P ² configuration.	0 1
b) i) Derive the spectroscopic term symbols for Ni ²⁺ ion.	0 N
ii) Deduce the term symbol for the lowest energy state of Ni ²⁺ ion.	0 N
iii) Calculate the number of microstates for Ni ²⁺	0 N
(10) N
c) i) Draw the simplified Orgel diagram for V^{3+} octahedral and tetrahedral comp	ple
(10	
ii) The solution of $[V(C_2O_4)_3]^{3-}$ ion is reported to exhibit bands at 16 5	00
$(\epsilon_{\text{max}} = 16 \text{ L mol}^{-1} \text{ cm}^{-1})$ and 23 500 cm ⁻¹ $(\epsilon_{\text{max}} = 12 \text{ L mol}^{-1} \text{ cm}^{-1})$. Sk	
electronic spectrum you would expect for $[V(C_2O_4)_3]^{3-}$. Give reasons and these bands to the appropriate transitions and account for any missi	
allowed bands.	ng
(30	M
iii) Calculate the values of the ligand field parameter Δ and the Racah paramet	er
for $[V(C_2O_4)_3]^{3-}$ using the data given in $c(ii)$ above.	
(10	M
3. a) i) Define the terms ligand, chelate complex and penetration complexes.	
(15	M
ii) Briefly explain the trigonal and tetragonal distortion in octahedral complexes.	
(25)	M

b) Explain the following factors in determining the structure of linkage isomers
i) effect of π-bonding
ii) steric factor effect of stereochemistry
iii) symbiotic theory
30 Marks
c) i) What are the limitations of valence bond theory.

ii) The magnetic moment of [MnBr₄]²⁻ is 5.9 B.M. what is the geometry of this complexes. Explain how the magnetic moment of a complex could be used to predict the geometry.

(20 Marks)