EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS SPECIAL DEGREE EXAMINATION IN COMPUTER SCIENCE 2009/2010 (Sep./Oct., 2011) CS 401: Advanced Database Management Systems Answer all questions This paper has 4 questions in a total of 5 pages

llowed: Three Hours

r efficient transaction processing systems should provide high availability and fast response time r hundreds of concurrent users.

i) Describe what is meant by interleaved concurrency using a suitable example.	[10%]
b) Describe briefly the problems that could arise when the concurrency is uncontrolled.	[10%]
c) State what is serialisable schedule and conflict serialisable schedule.	[10%]

- d) State the method to construct the precedence graph for a schedule and *explain* how a precedence graph can be used to analyse a schedule. [15%]
- e) Consider the following schedule of four transactions T_1 , T_2 , T_3 and T_4 :

Transaction T_1	Transaction T_2	Transaction T_3	Transaction T_4
read_item(X)			<pre>read_item(Y) Y:=Y+Y+100 write_item(Y)</pre>
Theor	read_item(Y)	Serveral 178 July	States?
	Y:=Y+250		di land
	write_item(Y)	(D4	- Chest
		read_item(X)	
		X:=X+200	-
10.54	the bear of the	write_item(X)	
read_item(Y)	etLberr et Te	2	
Y:=Y-X			
write_item(Y)			
	read_item(Z)		
	Z:=Z-250	di.bser	
	write_item(Z)	2195-2912	
		Z:=500	
		write_item(Z)	
			read_item(X)

i. Construct the precedence graph for the schedule given above.

ii. Considering only the order and type of operations, state whether the given schedule is

[15%

conflict serialisable or not. Justify your answer. ii. iii. Suppose the transaction T_4 is removed from the schedule discuss about the serialisa of the new schedule. (f) Discuss about the relation between the serialisability of a schedule and concurrency. estar 2. The main challenge with concurrency and transactions is to preserve isolation *i.e.*, each transa Expoperates as if it were the only one running on a database. Usir (a) State the basic two-phase locking(shared or Exclusive) protocol in detail. sho (b) *Explain* how the two-phase locking protocol(shared or Exclusive) ensures isolation of a t The action using a suitable example. Do (c) Conversion of locks is one approach in which a read lock can be upgraded to a write lock One a write lock can be down graded to a read lock. unn i. Formulate rules that should be followed during a lock conversion Wa ii. List the advantages and disadvantages of lock conversion. i. (d) By considering the necessary conditions for a dead lock, show that the conservative 2P deadlock-free.

- (e) State clearly the Strict 2PL and Rigorous 2PL protocols.
- (f) Consider the following schedule:

Transaction T_1	Transaction T_2	Transaction T_3
read_item(X)		SCAPPED IN 1995
read_item(Y)		
Y:=Y-X		
write_item(Y)	17Toelst	
Commit	02+3+11	
(C) (C) (C)	Lorene	read_item(X)
		read_item(Z)
		X:=X+Z
	read_item(Y)	
	Y:=Y+250	(Phm
	write_item(Y)	
	read_item(Z)	
	Z:=Z-250	
	write_item(Z)	
	Commit	
		write item(X)
Selectory 1		Commit

i. *Write* the list of operations that would be performed and the outcome of the given scheiunder the strict 2PL.

 $_{\rm S~401}$ uation of Question 2...

3/5

CS 401-2010

[10%

[15%

	ii. Write the list of operations that would be performed and the outcome of the given schedule	
	under the rigorous 2PL.	[10%]
lisab	iii. Discuss about the performance of the strict 2PL and rigorous 2PL protocols based on the list of operations obtained in parts (i) and (ii).	[10%]
n	estamp ordering is a popular protocol for concurrency control.	1
nsaci	Explain the basic timestamp ordering protocol in detail.	[15%]
•)	Using a simple schedule,	
	show that the basic timestamp ordering can enforce concurrency control.	[15%]
a tri	The basic timestamp ordering protocol cannot ensure recoverability.	
	Do you agree with the above statement? Justify your answer using an example.	[15%
ock ()	One problem with basic timestamp ordering protocol is that it may reject some operations	
	unnecessarily. Using a simple example show that this statement is true.	[15%
3)	Wait-die and wound-wait are two deadlock prevention schemes.	

i. Write rules to implement the two schemes.

ii. Using the following schedule *show* that wait-die (or wound-wait) scheme prevents deadlock:

2PI

Transaction T_1	Transaction T_2	Transaction T_3
Begin		dentity with the loss
read_item(X)		and share out
read_item(Y)		
Y :=Y-X	request data text sola	
	Begin	Charles and the Sol
	read_item(Z)	STORE and such as
	Z:=Z-250	and see and income
	and the second sector and	Begin
		read_item(X)
	our esponsible neu	read_item(Z)
		X:=X+Z
write_item(Y)		
Commit		
	write_item(Z)	
	read_item(X)	
	X:=X+250	
	write_item(X)	
		write_item(X)

- iii. The schemes may cause some transactions to be aborted needlessly, even though they Tr never cause a deadlock. Show that this statement is true by applying one of the st to a suitable schedule.
- 4. A database system should keep information about the changes it makes, especially to recover Y: a failure.
 - (a) **Describe** briefly the process of caching of disk pages in main memory when the DBMS requestion on some data item.
 - (b) Explain briefly the deferred update and immediate update techniques.
 - (c) State what is meant by steal/no-steal approach.
 - (d) State what is meant by force/no-force approach.
 - (e) Describe the recovery technique based on deferred update. Your answer should includ idea, the relevant log entries and the recovery procedure.
 - (f) A DBMS uses immediate update technique for recovery. The DBMS is provided with a nu of slots in memory for caching where each slot can hold one disk page. Suggest a suitable combination of disk management techniques (steal/no-steal and force)

force) when the number of slots provided is low. *Justify* your answer.

- (g) Consider the part of the schedule for the three transactions T_1 , T_2 and T_3 given in pa Assuming that the DBMS uses a deferred update technique for recovery and strict twolocking protocol for concurrency, answer the following regarding the schedule given above
 - i. Write the log entries that would be made during the execution of the transactions T and T_3 . Note that the DBMS uses a strict 2PL protocol.
 - ii. Suppose the system crashes at the end of the schedule given above, suggest a suitable n ery procedure and *write down* the operations that would be performed during recov
 - iii. **Discuss** about the state of the database and propose measures to improve the effic of the DBMS.

re

W.

uation of Question 4...

Transaction T_1	Transaction T_2	Transaction T_3
Begin		
read_item(X)		
read_item(Y)		
Y:=Y-X		
		Begin
		read_item(X)
		read_item(Z)
	Begin	
	read_item(X)	
	X:=X-500	
	write_item(X)	1
		Z:=X+Z
		write_item(Z)
		Commit
write_item(Y)		
	read_item(Y)	
	Y:=Y+250	
-	write_item(Y)	
	Commit	

LIBRA 30 DEC

age

-ph

ve:

 T_1 ,

rec

ver

cien