FIRST EXAMINATION, IN SCIENCE -(2007/2008) SECOND SEMESTER (Aug/Sept, 2009)

## MT 102-REAL ANALYSIS

(PROPER/REPEAT)

Q1. (a) Define the terms Supremum and Infimum of a bounded susset of $\mathbb{R}$.
Find the Supremum and Infimum of each subset of $\mathbb{R}$. State whether they are in $S$.
i. $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$;
ii. $S=\{x \in \mathbb{R}:|2 x+1|<5\}$;
iii. $S=\left\{x \in \mathbb{Q}: x^{2} \leq 7\right\}$.
(b) State and prove the Archimedian property. Prove that between any two distinct real numbers, there exists a rational number and an irrational number.
[40 Marks]
(c) State the mathematical induction principle and use it to prove that

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for all positive integers $n$.
[20 Marks]

Q2. (a) State the following theorems with reference to a sequence of real numbers.
i. Monotone convergence theorem;
ii. Monotone subsequence theorem;
iii. Bolzano-Weierstras theorem.

Prove the Bolzano-Weierstras theorem from the Monotone convergence theorem and Monotone subsequence theorem.
(b) Let $\left(y_{n}\right)$ be a sequence of real numbers defined by $y_{1}=1$, and
$y_{n}=\frac{1}{4}\left(2 y_{n}+3\right), \forall n \in \mathbb{N}$. Show that this sequence is convergent. Also find the limit of this sequence.

Q3. (a) Let $A \subseteq \mathbb{R}$ and $f: A \rightarrow \mathbb{R}$ be a function. Define what it means to say that the limit of $f$ at a point $x_{0}$ is $l$ (i.e, $\lim _{x \rightarrow x_{0}} f(x)=l$ ).
By varifying the appropriate definitions prove
i. $\lim _{x \rightarrow 2}\left(2 x^{2}-x+1\right)=7$;
ii. $\lim _{x \rightarrow \infty} \frac{1}{x^{2}+2 x+1}=0$.
[30 Marks]
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Assume that $\lim _{x \rightarrow a} f(x)=l$ and $l \neq 0$. Prove that there exists $\delta>0$ such that $\frac{|l|}{2}<|f(x)|<\frac{3|l|}{2}$ for all $x$ satisfying $0<|x-a|<\delta$.
Prove that if $\lim _{x \rightarrow a} f(x)=l$ with $l \neq 0$ then $\lim _{x \rightarrow a} \frac{1}{f(x)}=\frac{1}{l}$.
[40 Marks]
(c) If $\lim _{x \rightarrow a} f(x)=l$, then show that $\lim _{x \rightarrow a}|f(x)|=|l|$. Also give an example to show that the converse part of the above result is not true. [ 30 Marks ]

Q4. (a) Let $f: A \rightarrow \mathbb{R}$ and $a \in \mathbb{R}$, where $A \subseteq \mathbb{R}$. When we san that $f$ is differentiable at ' $a$ '.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\sin x \quad \forall x \in \mathbb{R}$. Use the definition to prove that $f$ is differentiable at every point $a \in \mathbb{R}$, and $f^{\prime}(a)=\cos a$.
(b) Let $f, g: A \rightarrow \mathbb{R}$ both be differentiable at $a \in \mathbb{A}$, where $A \subseteq \mathbb{R}$. Prove, using the rules of limit that $(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$. [30 Marks]
(c) State the Mean value theorem.

Use the mean value theorem to prove the following:
i. $\sin x<x$ for $x>0$;
ii. $\ln (1+x)<x$ for $x>0$;

Deduce that $e^{-x} \sin x<\frac{x}{1+x}$ for $x>0$.
[40 Marks]

Q5. (a) Explain in terms of $\varepsilon, \delta$ what it means to say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at a point $x_{0}$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\cos x \quad \forall x \in \mathbb{R}$. Prove that $f$ is continuous at every point $a \in \mathbb{R}$.
[30 Marks]
(b) State Rolle's theorem.

Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two functions with $a<b$. Suppose that $f$ and $g$ are differentiable on $(a, b)$ and continuous on $[a, b]$ and that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$.

Prove that there exists $c \in(a, b)$ for which

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)} .
$$

(c) Calculate the following limits stating carefully any results you use.
i. $\lim _{\theta \rightarrow 0} \frac{\theta+\tan \theta}{\sin \theta}$;
ii. $\lim _{x \rightarrow 0} \frac{\ln ^{2}(1+x)+\ln ^{2}(1-x)}{x^{2}}$.

Q6. (a) Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers. What do you mean by the following:
i. $\lim _{n \rightarrow \infty}\left(a_{n}\right)=L$, where $L$ is a real number;
ii. $\lim _{n \rightarrow \infty}\left(a_{n}\right)=\infty$;
iii. $\left(a_{n}\right)$ is a Cauchy sequence.
(b) Use the definition to show that $\lim _{n \rightarrow \infty}\left(\frac{3 n+2}{n+1}\right)=3$.
[30 Marks]
(c) Prove that every cauchy sequence of real numbers is bounded.
[20 Marks]
(d) Prove that the sequence $\left(x_{n}\right)$ given by $x_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n} ; \quad \forall n \in \mathbb{N}$ is not cauchy.

