26 OCT 2009 DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE -(2007/2008) SECOND SEMESTER (Aug/Sept, 2009) MT 102 - REAL ANALYSIS (PROPER/REPEAT)

Answer all questions

Time: Three hours

Me

Q1. (a) Define the terms Supremum and Infimum of a bounded susset of \mathbb{R} . Find the Supremum and Infimum of each subset of R. State whether they are in S.

i.
$$S = \{\frac{1}{n} : n \in \mathbb{N}\};$$

ii.
$$S = \{x \in \mathbb{R} : |2x+1| < 5\};$$

ii.
$$S = \{x \in \mathbb{Q} : x^2 \le 7\}.$$

[40 Marks]

- (b) State and prove the Archimedian property. Prove that between any two distinct real numbers, there exists a rational number and an irrational number. [40 Marks]
- (c) State the mathematical induction principle and use it to prove that

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

for all positive integers n.

[20 Marks]

- Q2. (a) State the following theorems with reference to a sequence of real numbers.
 - i. Monotone convergence theorem;
 - ii. Monotone subsequence theorem;
 - iii. Bolzano-Weierstras theorem.

Prove the Bolzano-Weierstras theorem from the Monotone convergence theorem and Monotone subsequence theorem. [50 Marks]

- (b) Let (y_n) be a sequence of real numbers defined by y₁ = 1, and y_n = ¼(2y_n + 3), ∀n ∈ N. Show that this sequence is convergent. Also find the limit of this sequence.
- Q3. (a) Let $A \subseteq \mathbb{R}$ and $f : A \to \mathbb{R}$ be a function. Define what it means to say that the limit of f at a point x_0 is l (i.e, $\lim_{x \to x_0} f(x) = l$). By varifying the appropriate definitions prove

i.
$$\lim_{x \to 2} (2x^2 - x + 1) = 7;$$

ii. $\lim_{x \to \infty} \frac{1}{x^2 + 2x + 1} = 0.$

[30 Marks]

- (b) Let f: R → R be a function. Assume that lim_{x→a} f(x) = l and l ≠ 0. Prove that there exists δ > 0 such that |l|/2 < |f(x)| < 3|l|/2 for all x satisfying 0 < |x a| < δ.
 Prove that if lim_{x→a} f(x) = l with l ≠ 0 then lim_{x→a} 1/f(x) = 1/l. [40 Marks]
- (c) If $\lim_{x \to a} f(x) = l$, then show that $\lim_{x \to a} |f(x)| = |l|$. Also give an example to show that the converse part of the above result is not true. [30 Marks]

Q4. (a) Let $f : A \to \mathbb{R}$ and $a \in \mathbb{R}$, where $A \subseteq \mathbb{R}$. When we say that f is differentiable at 'a'.

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sin x \quad \forall x \in \mathbb{R}$. Use the definition to prove that f is differentiable at every point $a \in \mathbb{R}$, and $f'(a) = \cos a$. [30 Marks]

- (b) Let $f, g: A \to \mathbb{R}$ both be differentiable at $a \in \mathbb{A}$, where $A \subseteq \mathbb{R}$. Prove, using the rules of limit that (fg)'(a) = f'(a)g(a) + f(a)g'(a). [30 Marks]
- (c) State the Mean value theorem.

Use the mean value theorem to prove the following:

i. sin x < x for x > 0;

ii. $\ln(1+x) < x$ for x > 0;

Deduce that $e^{-x} \sin x < \frac{x}{1+x}$ for x > 0.

40 Marks

to

Sri Lonke

Q5. (a) Explain in terms of ε, δ what it means to say that a function $f : \mathbb{R} \to \mathbb{R}$ is continuous at a point x_0 .

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \cos x \quad \forall x \in \mathbb{R}$. Prove that f is continuous at every point $a \in \mathbb{R}$. [30 Marks]

(b) State Rolle's theorem.

Let $f, g: [a, b] \to \mathbb{R}$ be two functions with a < b. Suppose that f and g are differentiable on (a, b) and continuous on [a, b] and that $g'(x) \neq 0$ for all $x \in (a, b)$.

Prove that there exists $c \in (a, b)$ for which

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

[30 Marks]

(c) Calculate the following limits stating carefully any results you use.

i.
$$\lim_{\theta \to 0} \frac{\theta + \tan \theta}{\sin \theta};$$

ii.
$$\lim_{x \to 0} \frac{\ln^2(1+x) + \ln^2(1-x)}{x^2}.$$

[40 Marks]

- Q6. (a) Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers. What do you mean by the following:
 - i. $\lim_{n \to \infty} (a_n) = L$, where L is a real number;

11.
$$\lim_{n \to \infty} (a_n) = \infty;$$

iii. (a_n) is a Cauchy sequence.

[30 Marks]

- (b) Use the definition to show that $\lim_{n \to \infty} \left(\frac{3n+2}{n+1} \right) = 3.$ [30 Marks]
- (c) Prove that every cauchy sequence of real numbers is bounded.

[20 Marks]

(d) Prove that the sequence (x_n) given by $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$; $\forall n \in \mathbb{N}$ is not cauchy. [20 Marks]