

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2007/2008

SECOND SEMESTER (Aug./Sept.,2009)

MT 104 - DIFFERENTIAL EQUATIONS & FOURIER SERIES

Proper & Repeat

Answer all questions

Time: Three hours

1. (a) State the necessary and sufficient condition for the differential equation

$$M(x,y) dx + N(x,y) dy = 0$$

to be exact.

Hence solve the following differential equation

$$(y^2 - x^2 \sin xy)\frac{dy}{dx} = xy \sin xy - \cos xy - e^{2x}.$$

(b) Show that the solution of the general homogeneous equation of the first order and degree $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$ is

$$\log x = \int \frac{dv}{f(v) - v} + C,$$

where $v = \frac{y}{x}$ and C is a constant.

Hence solve the differential equation

$$(x^2 - y^2)dx + 2xy \, dy = 0.$$

i.
$$\frac{1}{F(D)}e^{\alpha x} = \frac{1}{F(\alpha)}e^{\alpha x}$$
, where α is a constant and $F(\alpha) \neq 0$;

ii.
$$\frac{1}{F(D)}e^{\alpha x}V=e^{\alpha x}\frac{1}{F(D+\alpha)}V$$
, where V is a function of x .

(b) Find the general solution of the following differential equations by using the rein (a).

i.
$$(D^3 - 3D - 2)y = 540 x^3 e^{-x}$$
.

ii.
$$(D^3 - D)y = e^x + e^{-x}$$
.

3. (a) Let $(1 + 2x) = e^t$. Show that

$$(1+2x)\,\frac{d}{dx}\equiv 2\mathcal{D},$$

and

$$(1+2x)^2 \frac{d^2}{dx^2} \equiv 4(\mathcal{D}^2 - \mathcal{D}).$$

where
$$\mathcal{D} \equiv \frac{d}{dt}$$
.

Use the above results to find the general solution of the following differential equa

$$[(1+2x)^2D^2 - 6(1+2x)D + 16]y = 8(1+2x)^2.$$

(b) Solve the following simultaneous differential equations:

$$(D-17)y + (2D-8)z = 0,$$

$$(13D-53)y - 2z = 0.$$

6.

4. Use the method of Frobenius to obtain two linearly independent solutions in series the following differential equation

$$9x^2y'' + 9x^2y' + 2y = 0.$$

$$P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz = 0.$$

Hence solve the following equation

$$2(y+z)dx - (x+z)dy + (2y - x + z)dz = 0.$$

i.
$$\frac{dx}{y-zx} = \frac{dy}{yz+x} = \frac{dz}{x^2+y^2};$$

ii.
$$\frac{dx}{2x} = \frac{dy}{-y} = \frac{dz}{4xy^2 - 2z}$$
.

(c) Find the general solution of the following linear partial differential equations:

i.
$$(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx;$$

ii.
$$z = px + qy + \sqrt{1 + p^2 + q^2}$$
.

(d) Apply Charpit's method or otherwise to find the complete and the singular solution of the following non-linear first-order partial differential equation

$$pxy + pq + qy = yz$$

Here,
$$p = \frac{\partial z}{\partial x}$$
 and $q = \frac{\partial z}{\partial y}$.

6. (a) Obtain Fourier series expansion of

$$f(x) = \begin{cases} 2x & \text{when } 0 \le x < 3, \\ 0 & \text{when } -3 < x < 0 \end{cases}$$

(b) Use the finite Fourier transformation to show the solution of the partial differential equation

$$\frac{\partial V}{\partial t} = \frac{\partial^2 V}{\partial x^2},$$

subject to the boundary condition:

$$V(0,t) = 0$$
, $V(4,t) = 0$, $V(x,0) = 2x$, where $0 < x < 4$, $t > 0$

$$V(x,t) = \frac{-16}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} e^{\frac{-n^2 \pi^2 t}{16}} \cos n\pi \sin \frac{n\pi x}{4}.$$