Answer all Questions

Time: One hour

1. (a) Define what is meant by the convergent or divergent of an infinite series $\sum_{n=1}^{\infty} a_n$. Show that the series

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \frac{1}{7\cdot 9} + \cdots,$$

is convergent and find its sum.

(b) Let ∑_{n=1}[∞] a_n and ∑_{n=1}[∞] b_n be two series of real numbers.
i. Show that if ∑_{n=1}[∞] a_n converges, then a_n → 0 as n → ∞.
ii. Is it true that, if a_n → 0 as n → ∞ then the series ∑_{n=1}[∞] a_n converges? Justify your answer.

2. (a) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series of positive real numbers such that $\left(\frac{a_n}{b_n}\right)$ tends to a finite non-zero limit as $n \to \infty$. Prove that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ either both converge or both diverge.

(b) Determine whether the following series converge or diverge:

i.
$$2 + \frac{3}{2^3} + \frac{4}{3^3} + \frac{5}{4^3} + \cdots$$
,
ii. $1 + \frac{2^2 + 1}{2^3 + 1} + \frac{3^2 + 1}{3^3 + 1} + \frac{4^2 + 1}{4^3 + 1} + \cdots$

(c) i. Let $(a_n)_{n=1}^{\infty}$ be a decreasing sequence of positive terms such that $a_n \to a_n n \to \infty$. Show that the series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

ii. Prove that $\sum_{n=1}^{\infty} (-1)^{n+1} \sin\left(\frac{1}{n}\right)$ converges. What will happen to this series if we drop the factor $(-1)^{n+1}$? Justify your answer.