EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS
 FIRST EXAMINATION IN SCIENCE -2007\%2008
 SECOND SEMESTER (Aug/Sept., 2009)
 MT 105 - THEORY OF SERIES
 (PROPER/REPEAT)

Answer all Questions
Time: One hour

1. (a) Define what is meant by the convergent or divergent of an infinite series $\sum_{n=1}^{\infty} a_{n}$. Show that the series

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\frac{1}{7 \cdot 9}+\cdots
$$

is convergent and find its sum.
(b) Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be two series of real numbers.
i. Show that if $\sum_{n=1}^{\infty} a_{n}$ converges, then $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
ii. Is it true that, if $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ then the series $\sum_{n=1}^{\infty} a_{n}$ converges? Justify your answer.
2. (a) Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be series of positive real numbers such that $\left(\frac{a_{n}}{b_{n}}\right)$ tends to a finite non-zero limit as $n \rightarrow \infty$. Prove that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ either both converge or both diverge.
(b) Determine whether the following series converge or diverge:
i. $2+\frac{3}{2^{3}}+\frac{4}{3^{3}}+\frac{5}{4^{3}}+\cdots$,
ii. $1+\frac{2^{2}+1}{2^{3}+1}+\frac{3^{2}+1}{3^{3}+1}+\frac{4^{2}+1}{4^{3}+1}+\cdots$.
(c) i. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a decreasing sequence of positive terms such that a_{n} as $n \rightarrow \infty$. Show that the series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.
ii. Prove that $\sum_{n=1}^{\infty}(-1)^{n+1} \sin \left(\frac{1}{n}\right)$ converges. What will happen to this seri if we drop the factor $(-1)^{n+1}$? Justify your answer.

