Sastorn Univer EASTERN UNIVERSITY, SRI LANKA SPECIAL DEGREE EXAMINATION IN MATHEMATIC

2001/2002 (Jan.'2004)

FIRST SEMESTER

MT 402 - MEASURE THEORY

Answer all questions Time : Three hours

- (a) Let (ϕ_n) be an increasing sequence of step functions on \mathbb{R} such 1. that $(\int \phi_n)$ is convergent. Prove from first principle that (ϕ_n) converges almost everywhere on \mathbb{R} .
 - (b) Show that a subset E of \mathbb{R} is null if, and only if, there is an increasing sequence (ϕ_n) of step functions on \mathbb{R} such that
 - i. $\lim_{n \to \infty} \int \phi_n < \infty$ and
 - ii. for all $x \in \mathbb{E}$, $\phi_n(x) \to \infty$ as $n \to \infty$.

2. (a) Let $f \in L^1(\mathbb{R})$. Prove that there exists a sequence (ϕ_n) of step functions such that $\phi_n(x) \to f(x)$ almost everywhere in \mathbb{R} , and that

$$\int |f - \phi_n| \to 0 \quad \text{as} \quad n \to \infty.$$

(b) Prove that the function $x \to f(x) \cos kx$ belongs to $L^1(\mathbb{R})$ for each $k \in \mathbb{R}$, and that

$$\lim_{k \to \infty} \int_{\mathbb{R}} f(x) \cos kx \, dx = 0.$$

- 3. (a) Let f be a function which vanishes outside the interval [a, b].
 Prove that if f is bounded and if the points of discontinuity of f form a null set then f ∈ L¹(ℝ).
 - (b) State the Monotone convergence Theorem in L¹(ℝ) and use it to prove

i.
$$\int_{-\infty}^{\infty} e^{-|x|} dx = 2$$
, and
ii. $\lim_{n \to \infty} \int_{0}^{1} \frac{1+x}{1+x^{n}} dx = \frac{3}{2}$.

4. State and prove the Dominated convergence theorem in $L^1(\mathbb{R})$. (Monotone convergence theorem may be assumed.)

Prove that, for $\beta > -1$,

$$\int_0^\infty \frac{e^{-\beta x}}{e^x + e^{-x}} \, dx = \sum_{r=0}^\infty \frac{(-1)^r}{(2r+1+\beta)}.$$

- State Fubini's Theorem and Tonnelli's theorem for Lebesgue integrable function on R².
 - (a) Prove that

$$f(x, y) = (x - \sin x)y^2 e^{-xy} \in L^1((0, \infty) \times (0, \infty))$$

and deduce that

$$\int_0^\infty \frac{x - \sin x}{x^3} \ dx = \frac{\pi}{4}.$$

(b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2} \quad \text{if} \quad (x,y) \neq (0,0)$$
$$= 0 \quad \text{if} \quad (x,y) = (0,0).$$

Does $f \in L^1((0,1) \times (0,1))$? Justify your answer.

- 6. Define the term measurable function.
 - (a) Prove that $f : \mathbb{R} \to \mathbb{R}$ is measurable if, and only if $\operatorname{mid}(-g, f, g)$ is integrable whenever g is a non-negative integrable function.
 - (b) Let (f_n) be a sequence of measurable functions on ℝ. Let
 f : ℝ → ℝ and f_n → f almost everywhere. Prove that f is measurable.
 - (c) Let f : R → R be a measurable function and let c ∈ R. Prove that {x ∈ R | f(x) ≤ c} is measurable.
 (State without proof, any convergence theorem that you use.)