SPECIAL DEGREE EXAMINATION IN MATHEMATICS

2001/2002 (Jan.'2004)(PART II)

MT 403 - MEASURE THEORY

Answer four questions only
Time : Three hours

1. Explain what is meant by a step-function on \mathbb{R}.
(a) Let $\left(\phi_{n}\right)$ be an increasing sequence of step functions on \mathbb{R} such that $\left(\int \phi_{n}\right)$ is convergent. Prove from first principle that $\left(\phi_{n}\right)$ converges almost everywhere on \mathbb{R}.
(b) Show that a subset E of \mathbb{R} is null if, and only if, there is an increasing sequence $\left(\phi_{n}\right)$ of step functions on \mathbb{R} such that
i. $\lim _{n \rightarrow \infty} \int \phi_{n}<\infty$ and
ii. for all $x \in \mathbb{E}, \quad \phi_{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$.
2. (a) Let $f \in L^{1}(\mathbb{R})$. Prove that there exists a sequence $\left(\phi_{n}\right)$ of step functions such that $\phi_{n}(x) \rightarrow f(x)$ almost everywhere in \mathbb{R}, and that

$$
\int\left|f-\phi_{n}\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

(b) Prove that the function $x \rightarrow f(x) \cos k x$ belongs to $L^{1}(\mathbb{R})$ for each $k \in \mathbb{R}$, and that

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}} f(x) \cos k x d x=0
$$

(c) Given examples of sequences $\left(g_{n}\right)$ and $\left(h_{n}\right)$ in $L^{1}(\mathbb{R})$ such that
i. $g_{n} \rightarrow 0$ almost everywhere but $\int g_{n} \nrightarrow 0$ and
ii. $\int h_{n} \rightarrow 0$ but $h_{n} \rightarrow 0$ almost everywhere.
3. (a) Let f be a function which vanishes outside the interval $[a, b]$. Prove that if f is bounded and if the points of discontinuity of f form a null set then $f \in L^{1}(\mathbb{R})$.
(b) State the Monotone convergence Theorem in $L^{1}(\mathbb{R})$ and use it to prove
i. $\int_{-\infty}^{\infty} e^{-|x|} d x=2$,
ii. If $f \in L^{1}$ then $\int|f|=0$ if, and only if, $f=0$ almost everywhere, and
iii. $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{1+x}{1+x^{n}} d x=\frac{3}{2}$.
4. State and prove the Dominated convergence theorem in $L^{1}(\mathbb{R})$.
(Monotone convergence theorem may be assumed.)
(a) Prove that, for $\beta>-1$,

$$
\int_{0}^{\infty} \frac{e^{-\beta x}}{e^{x}+e^{-x}} d x=\sum_{r=0}^{\infty} \frac{(-1)^{r}}{(2 r+1+\beta)}
$$

(b) Let p, q be real numbers such that $0<p<q$. Prove that

$$
\int_{0}^{1} \frac{x^{p}-x^{q}}{x(1-x)} d x=(q-p) \sum_{n=0}^{\infty} \frac{1}{(n+p)(n+q)}
$$

5. State Fubini's Theorem for Lebesgue integrable function on \mathbb{R}^{2}.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be measurable and suppose that one of the repeated integrals

$$
\int\left[\int|f(x, y)| d x\right] d y, \quad \int[|f(x, y)| d y] d x
$$

exists. Prove that $f \in L^{1}\left(\mathbb{R}^{2}\right)$.
(a) Prove that

$$
f(x, y)=(x-\sin x) y^{2} e^{-x y} \in L^{1}((0, \infty) \times(0, \infty))
$$

and deduce that

$$
\int_{0}^{\infty} \frac{x-\sin x}{x^{3}} d x=\frac{\pi}{4}
$$

(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
f(x, y) & =\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \text { if } \quad(x, y) \neq(0,0) \\
& =0
\end{aligned} \text { if } \quad(x, y)=(0,0) .
$$

Does $f \in L^{1}((0,1) \times(0,1))$? Justify your answer.
6. (a) Define the term measurable function.
i. Prove that, $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable if, and only if $\operatorname{mid}(-g, f, g)$ is integrable whenever g is a non-negative integrable function.
ii. Let $\left(f_{n}\right)$ be a sequence of measurable functions on \mathbb{R}. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f_{n} \rightarrow f$ almost everywhere. Prove that f is measurable.
iii. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function and let $c \in \mathbb{R}$. Prove that $\{x \in \mathbb{R} \mid f(x) \leq c\}$ is measurable.
(State without proof, any convergence theorem that you use.)
(b) What is meant by "a set $A \subseteq \mathbb{R}$ is null"?

Prove that an interval in \mathbb{R} is null if, and only if, it is degenerate.

