EASTERN UNIVERSITY, SRI LANKA

SPECIAL DEGRIEE EXAMINATION IN MATHEMATIC

2001/2002 (Jan/Feb.'2004)

MT 407 - RING THEORY

You should answer all questions. Time allowed is THREE hours only. Each question carries ONE HUNDRED marks.

1. (a) Prove that every finite integral domain is a field.
(b) If R is a commutative ring with unity, show that an ideal M in R is maximal if and only if R / M is a field. [40 marks]
(c) Let R be a principal ideal domain. Prove that every non-zero non-unit element of R can be expressed as a product of irreducible elements.
[35 marks]
2. (a) If F is a field, prove that $F[x]$ is a Euclidean domain. [40 marks]
(b) State and prove Eisenstein's criterion.
[25 marks]
(c) Let R be a unique factorization domain [ufd]. Show that the polynomial ring $R[x]$ is also a ufd.
[35 marks]
3. (a) Prove that an ideal $\langle\hat{p}\rangle$ in a principal ideal domain is maximal if and only if p is irreducible.
(b) Show that the set $\mathbb{Z}[i]$ of Gaussian integers is a Euclidean domain. [30 marks]
(c) Show, by an example, that every integral domain need not be a unique factorization domain.
[30 marks]
4. (a) In a ring \mathbb{Z} of integers, let p be a prime integer and let that, for some integer c, relatively prime to p, there exist integers x and y such that $x^{2}+y^{2}=c p$. Prove that integers a and b be found such that $p=a^{2}+b^{2}$.
[40 marks]
(b) Let M be an R-module and $x \in M$. Show that the set $K=\{r x+n x \mid r \in R, n \in \mathbb{Z}\}$ is an R-submodule of M containing x.
[30 marks]
(c) Prove that the submodules of the quotient module M / N are 0 : the form U / N where U is a submodule of M containing N.
[30 marks]
5. (a) Let R be a ring with unity and $\operatorname{Hom}_{R}(R, R)$ denote the ring of endomorphisms of R regarded as a right R-module. Prove that $R \simeq \operatorname{Hom}_{R}(R, R)$ as rings.
[30 marks]
(b) Let M be a finitely generated free module over a commutative ring R. Show that all bases of M have the same number of generators [30 marks
(c) Prove, for an R-module M, that the following are equivalent:
i. M is noetherian;
ii. Every submodule of M is finitely generated;

28 JUL 200 s
iii. Every nonempty set S of submodules of M has a maximal element.
6. (a) Let R be a principal ideal domain and M be a free module of rank n over R and N be a submodule of M. Prove that N is a free module of rank $\leq n$.
[45 marks]
(b) Let M be a finitely generated module over a principal ideal domain. Prove that M can be expressed as $M=F \oplus t(M)$ where F is a free submodule of M and $t(M)$ is the torsion submodule of M, and F is unique up to isomorphism.
[55 marks]

