EASTERN UNIVERSITY, SRI LANKA

SPECIAL DEGREE EXAMINATION
IN MATHEMATICS, $(2004 / 2005)$
(MARCH/APRIL, 2007)

PART II

MT410 - NUMERICAL LINEAR ALGEBIRA

Answer all Questions
Time allowed: Three hours

1. (a) Define the term "positive definite" as applied to an $n \times n$ Hermitian matrix.
(b) Prove that a Hermitian positive definite matrix A can be uniquely expressed as $A=L U$, where L is a unit lower-triangular matrix and U is an upper-triangular matrix.
(c) Show that a Hermitian matrix A is positive definite if end only if $A=G G^{H}$, where G is a non-singular lower-triangular matrix.

Determine G such that

$$
G G^{H}=\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

2. (a) An $n \times n$ elementary Hermitian matrix $H(\omega)$ is of the form

$$
H(\omega)=I-2 \omega \omega^{H}, \quad \omega^{H} \omega=1 \quad \text { or } \quad \omega=0
$$

where ω is an n-column vector and $\omega^{H}=\bar{\omega}^{T}$. Show that

$$
[H(\omega)]^{-1}=H(\omega)
$$

and that any product of elementary Hermitian matrices of :he same order is unitary.
(b) Show that, for any $x \in \mathbb{R}^{n}$, there is an $n \times n$ real elementary Hermitian matrix $H(\omega)$ such that $H(\omega) x=c e_{1}$ where $c^{2}:=x^{T} x$ and $e_{1}=(1,0,0, \cdots, 0)^{T} \in \mathbb{R}^{n}$.

Explain the optimal choice of the sign of c for the compusation of ω.
(c) Find an upper triangular matrix U such that $H A=U$, where H is a product of elementary Hermitian matrices and

$$
A=\left[\begin{array}{rrr}
1 & 6 & -1 \\
2 & 2 & 3 \\
2 & 1 & 2
\end{array}\right]
$$

making the optimal choice of sign in each stage of the process. Hence solve $A x=e_{1}$, where $e_{1}=(1,0,0)^{T}$.
3. (a) Define the phrase "strictly diagonally dominant" as applied to an $n \times n$ matrix.
(b) Let $A=I-L-U$ be an strictly diagonally dominant, where I is the $n \times n$ identity matrix, L a strictly lower-triangular metrix and U a strictly upper-triangular matrix. Prove that, for arbitrary $x^{(0)}$, the sequence of vectors $\left\{x^{(r)}\right\}$ defined by

$$
x^{(r+1)}=(I-L)^{-1}\left[U x^{(r)}+b\right], \quad r=0,1,2, \cdots
$$

converge to x, where $A x=b$. Prove also that, for some cor:esponiing vector and matrix norms,
$\left\|x^{(r+1)}-x\right\| \leq \frac{\left\|(I-L)^{-1} U\right\|}{1-\left\|(I-L)^{-1} U\right\|}\left\|x^{(r+1)}-x^{(r)}\right\|, \quad r=0,1,2, \cdots$
(c) The following equations are to be solved by Gauss-Seidal iteration:

$$
\begin{aligned}
10 x_{1}+x_{3}+x_{4} & =2 \\
x_{1}+x_{2}+10 x_{4} & =2 \\
5 x_{2}+x_{4} & =1 \\
x_{1}+5 x_{3} & =1
\end{aligned}
$$

Starting with $x^{(0)}=0$, obtain $x^{(1)}, x^{(2)}$ and bound for $\left\|x-x^{(2)}\right\|_{\infty}$.
4. (a) Define the terms " Upper Hessenberg" and "Tridiagona:" as applied to an $n \times n$ matrix A.

Show that there exists a unitary matrix S, a product of elementary Hermitian matrices, such that $S^{H} A S$ is an upper Hessenberg matrix.
(b) Determine a tridiagonal matrix T such that $S^{H} A S=T$, where S is unitary and

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 4 & 0 \\
0 & 3 & 3 & 4 \\
4 & 3 & 3 & 4 \\
0 & 4 & 4 & -3
\end{array}\right] \cdot\left(\begin{array}{ll}
1 B R A R \\
04 M A R 2008 \\
\end{array}\right.
$$

Choose an appropriate sign for the construction of each elementary Hermitian matrix needed.
5. (a.) Let A be an $n \times n$ Hermitian positive definite matrix with eigenvectors u_{i} corresponding eigenvalues λ_{i} that satisfy $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}>0$.

Let

$$
\begin{equation*}
\sigma_{r} x^{(r+1)}=A x^{(r)}, \quad r=0,1 ; 2, \cdots \tag{1.}
\end{equation*}
$$

where σ_{r} is a component of $A x^{(r)}$ of largest modulus. Given that $x^{0}=\alpha_{1} u_{1}+\alpha_{2} u_{2} \cdots+\alpha_{n} u_{n}$ with $\alpha_{1} \neq 0$, show that the sequence $\left\{x^{(r)}\right\}$ converges to the subspace spanned by u_{1} and tia; the sequence $\left\{\left|\sigma_{r}\right|\right\}$ converges to λ_{1}.
(b) Let

$$
\beta_{r}=\frac{\sigma_{r} x^{(r)^{H}} x^{(r+1)}}{x^{(r)^{H}} x^{(r)}}, \quad r=0,1,2, \cdots .
$$

Show that $\left\{\beta_{r}\right\}$ converges to λ_{I}.
(c) Starting with $x^{(0)}=(1,1,0)^{T}$, obtain $x^{(1)}, x^{(2)}, x^{(3)}$ by app ying (1) to the matrix

$$
A=\left[\begin{array}{rrr}
2 & 1 & 0 \\
1 & 3 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

Hence calculate β_{2}.
6. (a) Suppose that the eigenvalue λ_{1} of largest modulus and cor:esponding eigenvector z_{1} of an $n \times n$ matrix A have been computed by the Power method.
i. Show that there is a non-singular matrix S, a product of an elementary permutation matrix and elementary lower triangular matrix, such that

$$
A=S\left[\begin{array}{c|c}
\lambda_{1} & \gamma^{T} \\
\hline 0 & B
\end{array}\right] S^{-1},
$$

where B is an $(n-1) \times(n-1)$ matrix and γ is an $(n-1)$-column vector.
ii. Describe how the other eigenvalues and eigenvectors of A could be computed
(b) It is given that the matrix

$$
A=\left[\begin{array}{rrr}
2 & 1 & 0 \\
1 & 3 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

has an eigenvalue close to 3.4 and a corresponding eigenvector approximately $(0.7,1,0.3)^{T}$. Obtain 2×2 matrix B whose eigenvalues approximate the other eigenvalues of A.

