EASTERN UNIVERSITY,SRI LANKA

PECIAL DEGREE EXAMINATION IN MATHEMATICS

(2001/2002) (Jan./Feb.2004)

MT 410-NUMERICAL LINEAR ALGEBRA

should answer all questions. Time allowed is THREE hours only. Fach question ries ONE HUNDRED marks. The numbers beside the questions indicate the apximate marks that can be gained from the corresponding parts of the questions.

1. (a) Define the terms "positive definite" and "elementary lower-triangular" as applied to an $n \times n$ Hermitian matrix A.
(b) Prove that a positive definite matrix can be expressed as $A=L U$, where L is a unit lower triangular matrix and U is an upper triangular mátrix.
(c) Show that a Hermitian matrix A is positive definite if, and only if $A=G G^{H}$, where G is a non-singular lower triangular matrix.

Determine G such that

$$
G G^{H}=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 2 & 0 & 0 \\
1 & 0 & 4 & -2 \\
0 & 0 & -2 & 3
\end{array}\right]
$$

2. (a) Define therms "unitary matrix" and "elementary Hermitian matrix". [10]
(b) Show that, for any real vector x, there is a real elementary Hermitian matrix $H(w)$ such that $H(w) x=c e_{1}$, where $c=x^{T} x$ and $e_{1}=(1,0,0, \ldots, 0)^{T}$.
What is the optimal choice of the sign of c for the computation of w ?
(c) Determine an upper triangular matrix U such that $H A=U$, where H is a product of elementary Hermitian matrices and

$$
A=\left[\begin{array}{ccc}
1 & -3 & 2 \\
2 & 4 & -1 \\
2 & 5 & 0
\end{array}\right]
$$

making the optimal choice of sign in each stage of process. Hence solve the system $A x=b$, where $b=(5,0,-1)^{T}$
3. (a) Define the phrase strictly diagonally dominant applied to an $n \ddot{\times} n$ matrix A.
(b) Let $A=I-L-U$ be strictly diagonally dominant, where L is strictly lower triangular and U is strictly upper triangular. For arbitrary $x^{(0)}$, a sequence $\left\{x^{(r)}\right\}$ is defined by

$$
x^{(r+1)}=(I-w L)^{-1}\left\{w b+[(1-w) I+w U] x^{(r)}\right\}, \quad r=0,1,2,3 \ldots
$$

Show that $x-x^{(r+1)}=M\left(x-x^{(r)}\right), r=0,1,2, \ldots$, where $M=(I-w L)^{-1}[(1-w) I+w U]$ and $A x=b$. State a necessary and sufficient condition for $\left\{x^{(r)}\right\}$ to converge to x.
(c) Let $0<w \leq 1$ and let λ be any complex number with $|\lambda| \geq 1$. Show that $|\lambda+w-1| \geq|w \lambda| \geq w$. Deduce that if λ is any eigenvalue of M, then $|\lambda|<1$.
(d) The following equations are to be solved by successive over-relaxation with a relaxation parameter 1.1.
Starting with $x^{(0)}=0$, obtain $x^{(1)}, x^{(2)}$ and bound for $\left\|x-x^{(2)}\right\|_{\infty}$.

$$
\left[\begin{array}{cccc}
11 & 1 & 0 & 0 \\
1 & 11 & 1 & 0 \\
0 & 1 & 11 & 2 \\
0 & 0 & 2 & 11
\end{array}\right] x=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

(a) Define the term "upper Hessenberg matrix."
(b) i. Let A be an $n \times n$ matrix. Describe how a non-singular matrix S, a product of elementary lower triangular matrices and elementary permutation matrices, can be obtained so that $S^{-1} A S$ is an upper Hessenberg matrix.
(c) Given

$$
A=\left[\begin{array}{cccc}
2 & -1 & 2 & 0 \\
0 & -1 & 1 & 1 \\
-1 & -1 & 2 & 1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

find an upper Hessenberg matrix $S^{-1} A S$, where S is a product of elementary permutation matrices and elementary lower triangular matrices.
5. (a) Let A be an $n \times n$ symmetric positive definite matrix. Show that the solution of the system $A x=b$ is equivalent to the unique minimum of the function

$$
\begin{equation*}
F(y):=\frac{1}{2} y^{T} A y-y^{T} b . \tag{20}
\end{equation*}
$$

(b) For given initial iterate x_{0}, the k th iterate x_{k} is given by

$$
x_{k}=x_{k-1}+\alpha p_{k},
$$

where p_{k} is the search direction to be chosen such that $p_{k}^{T} r_{k-1} \neq 0, r_{k}=b-A x_{k}$ is residual. Show that

$$
\alpha=\frac{p_{k}^{T} r_{k-1}}{p_{k}^{T} A p_{k}}
$$

minimizes the function $F\left(x_{k-1}+\alpha p_{k}\right)$ with respect to α.
(c) Let A be an $n \times n$ symmetric positive definite matrix and $b \in \mathbb{R}^{n}$. The Conjugate Gradient (CG)iterative method for solving the system $A x=b$ is given by, for given initial iterate $x_{0}=0$,

$$
\begin{align*}
& \text { Set } p_{0}=r_{0} . \\
& \text { While } r_{k} \neq 0 \text {, } \\
& \alpha_{k}=\frac{r_{k}^{T} r_{k-1}}{p_{k}^{T} A p_{k}}, \tag{CG1}\\
& x_{k+1}=x_{k}+\alpha_{k} p_{k}, \tag{CG2}\\
& r_{k+1}=r_{k}-\alpha_{k} A p_{k}, \tag{CG3}\\
& \beta_{k+1}=\frac{r_{k+1}^{T} r_{k+1}}{r_{k}^{T} r_{k}}, \tag{CG4}\\
& p_{k+1}=r_{k+1}+\beta_{k+1} p_{k} . \tag{CG5}
\end{align*}
$$

Show that

$$
<r_{0}, r_{1}, \cdots, r_{k-1}>=<b, A b, \cdots, A^{k-1} b>.
$$

. Show also that

$$
\begin{aligned}
r_{k}^{T} r_{j} & =0 \text { for all } j<k \text { and } \\
p_{k}^{T} A p_{j} & =0 \text { for all } j<k .
\end{aligned}
$$

6. (a) i. Suppose that the eigenvalue λ_{1} of largest modulus and corresponding eigenvector z_{1} of an $n \times n$ matrix A have been computed by the Power method. Show that there is a non-singular matrix S, a product of an elementary permutation matrix and an elementary lower triangular matrix, such that

$$
A=S\left[\begin{array}{c|c}
\lambda_{1} & \gamma^{T} \\
\hline O & B
\end{array}\right] S^{-1}
$$

where B is an $(n-1) \times(n-1)$ matrix and γ is an $(n-1)$-column vectore
[25]
ii. Describe how the other eigenvalues and eigenvectors of A could be computed.
(b) It is given that the matrix

$$
A=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 3 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

has an eigenvalue close to 3.4 and that a corresponding eigenvector approximately $(0.7,1,0.3)^{T}$. Obtain 2×2 matrix B whose eigenvalues approximate the other eigenvalues of A.

