Eastern University, Sri Lanka

First Examination in Science (2001/2002)

First Semester (April 2002)

MT 101 - Foundation of Mathematics

Answer all questions

Time allowed: 3 hours

01.

Define the terms tautology and contradiction as applied to a logical proposition.

Explain what is meant by the statement that two propositions are logically equivalent.

(a) Let p, q and r be three propositions. Prove the following:

(i)
$$(p \land q) \rightarrow r \equiv (p \rightarrow r) \lor (q \rightarrow r)$$

(ii)
$$q \rightarrow (r \rightarrow p) \equiv (q \land (> p)) \rightarrow > r$$

(iii)
$$[> p \land (> q \land r)] \lor (q \lor r) \lor (p \land r) \equiv > r$$

(b) Test the validity of the following argument:

A person who drinks more alcohol sleeps more;

One who sleeps more commits less sin;

A person who commits less sin goes to heaven after death;

Therefore, a person who drinks more alcohol goes to heaven after death.

Q2.

Define the power set of a set.

Let A, B denote subsets of the set S.

(a) Write down a simple form of the negation of " $\forall x \in A, x \in B^c$ ". Hence prove that

$$A \cap B = \phi$$
 if and only if $A \subseteq B^c$, for $A, B \subseteq S$.

Prove further that

$$\exists X \in P(S)$$
 such that $(A \cap X) \cup (B \cap X^c) = \phi$ if and only if $A \cap B = \phi$.

(Here P(S) denotes the power set of S)

(b) Prove that $A \cap B$ is the largest subset of S contained in both A and B. Prove also that

$$P(A) \cup P(B) \subseteq P(A \cup B)$$
 and $P(A) \cap P(B) = P(A \cap B)$.

Give an example of a pair of sets C and D such that $P(C) \cup P(D) \neq P(C \cup D)$.

(c) Let
$$A, B, C$$
 and D be subsets of X and let $P = (A \cap B) \cap (C \cup D), \ Q = (A \cap D) \cup (B \cap C).$ Prove that $P \subseteq Q$. Prove also that

$$P = Q$$
 if and only if $B \cap C \subseteq A$ and $A \cap D \subseteq B$.

- Q3. Define the following:
- (i) An equivalence relation on a set;
- (ii) An equivalence class of an element in a set A.
- (a) A relation R is defined on \mathbb{N} , the set of natural numbers, by $xRy \Leftrightarrow \exists n \in \mathbb{Z} \text{ such that } x = 2^n y \ (x, y \in \mathbb{N})$ where \mathbb{Z} denotes the set of all integers. Prove that R is an equivalence relation.
- (b) Let R_1 and R_2 be two equivalence relations on a set X. Prove that $R_1 \cap R_2$ is an equivalence relation on X. Is $R_1 \cup R_2$ an equivalence relation on X? Justify your answer.
- (c) Let A be any set and let \sim be an equivalence relation on A. Prove the following: $\forall a, b \in A$

$$(i) \ [a] \neq \phi$$

(ii)
$$a \sim b \iff [a] = [b]$$

$$(iii)\ b \in [a] \Leftrightarrow [a] = [b]$$

(iv) Either
$$[a] = [b]$$
 or $[a] \cap [b] = \phi$

(Here [x] denotes the equivalence class of $x \in A$)

Q4. Define the following:

- (i) Injective mapping;
- (ii) Surjective mapping;
- (iii) Bijective mapping:
- (vi) Partially ordered set;
- (v) First element of a partially ordered set;
- (vi) Last element of a partially ordered set.

- (a) Let $f: S \to T$ be a mapping. Prove that
- (i) f is injective if and only if $f(A) \cap f(S \setminus A) = \phi$, $\forall A \subseteq S$.
- (ii) f is injective then $f(A \cap B) = f(A) \cap f(B)$ for $A, B \subseteq S$.
- (b) Let $f: A \to B$ and $g: B \to A$ be two mappings such that $g \circ f = I_A$ and $f \circ g = I_B$. Prove that f is bijective and $g = f^{-1}$. (Here \circ denotes the composition and f^{-1} denotes the inverse mapping of f)

11 1 1 Elly

(c) Show that a partially ordered set can have at most one first element and one last element.

Q5. Define the following:

- (i) A divisor of an integer;
- (ii) Greatest common divisor (gcd) of two integers a and b;
- (iii) Relatively prime;
- (iv) The greatest integer of a real number.
- (a) Let a, b, x, y and d be integers. Prove that d/(ax + by) if d/a and d/b. Prove also that $8/(u^2 v^2)$ for two odd integers u and v.

Explain whether it is possible to have 100 coins made of c cents, d dimes and q quarters, be worth exactly \$4.99. (Here 1 dime = 10 cents, 1 quarter = 25 cents)

- (b) If gcd(a,b) = d then there exist integers x and y such that ax + by = d. Use this result to prove the following:
- (i) If a, b and c are integers and c/ab then c/b, where a and c are relatively prime.
- (ii) If a and b are integers, p/ab and $p \nmid a$ then p/b, where p is a prime.
- (c) State Euclid's Divison Lemma.

Find the greatest common divisor of 2m + 1 and 2m - 1 using the repeated application of Euclid's Lemma.

Q6.

(a) Define the *least common multiple* of two integers and prove that lcm(a,b) gcd(a,b) = ab

where lcm(a, b) denotes the least common multiple of a and b and gcd(a, b) denotes the greatest common divisor of a and b.

- (b) If $c \neq 0$, we say that $a \equiv b \pmod{c}$ if and only if c/(a-b). Use this definition to show that
- (i) if $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1 then $a \equiv b \pmod{\frac{m}{c}}$
- (ii) if $a \equiv b \pmod{m_1}$ and $a \equiv b \pmod{m_2}$ then $a \equiv b \pmod{m_1 m_2}$.

What values of x will satisfy $2x \equiv 1 \pmod{7}$?

- (c) Define the Fibnacci Sequence f_n and show that
- (i) $f_{n+1}f_{n-1} f_n^2 = (-1)^n$ for $n \ge 1$
- (ii) $f_n > \alpha^{n-2}$ for $n \ge 3$, where $\alpha = \frac{1+\sqrt{5}}{2}$.