

IBRA R

26

0 2 JUN 2010

EASTERN UNIVERSITY SRI LANKA DEPARTMENT OF MATHEMATICS SECOND EXAMINATION IN SCIENCE - 2008/2009 FIRST SEMESTER (Feb./March, 2010)

CS 202 - OPERATING SYSTEMS

(Proper and Repeat)

Answer all questions

Time: 2 Hours

- 1. a. What is 'race condition' in process synchronization?
 - b. Discuss the problems with concurrent execution of processes.
 - c. Describe the Critical Section problem of process synchronization.
 - d. Explain the use of semaphores in process synchronization.
 - e. Suggest a solution to the Critical Section problem using semaphores.
- 2. a. Describe the spooling batch processing system.
 - b. Draw a diagram to show the changes on the state of a process.
 - c. Given the following information:

Process	CPU Burst	Arrival time
P1	5	0
P2	1	2
P3	4	6
P4	3	8
P5	2	13
P6	10	14

- i. Draw the Gantt chart for each of the following scheduling algorithms and calculate the average waiting time and average turnaround time for each algorithm.
 - Round robin scheduling (using a time quantum of 4);
 - Shortest Job Next scheduling (Pre-emptive).
- ii. Which is the most efficient algorithm for the particular problem? Justify your answer.

(P.T.O)

- 3. a. How do you confirm that a system is in deadlocked state?
 - b. Describe the resource allocation graph and wait for graph. Use appropriate diagrams to support your answer.
 - c. Consider the snapshot of system operation described below: The system has five processes namely, P1, P2, P3, P4 & P5 and three resource namely R1 (with 3 instances), R2 (with 2 instances) and R3 (with 2 instances).
 - P1 holds 2 instances of R1 and requests an instance of R2
 - P2 holds an instance of R2 and requests an instance of R3
 - P3 holds an instance of R1
 - P4 holds an instance of R2 and requests an instance of R3
 - P5 holds an instance of R3 and requests an instances of R1 & R2
 - i. Draw the resource allocation graph and wait for graph for the above system.
 - Examine the system for deadlock, if it does, list the processes involved in system. Justify your answer.
- 4. a. Discuss the First fit and Best fit memory allocation schemes.
 - b. What do you understand by "memory fragmentation"?
 - c. List two advantages and two disadvantages of the paged memory allocation pol
 - d. The following table shows the job details and the list of memory blocks of the system:

J	0	b	L	ist	•
-					•

Job no	Memory requested (Kb) 20		
J1			
J2	30		
J3	10		
J4	20		
J5	15		

Memory List:

Memory Location	Block Size (Kb)
100	15
200	50
300	30
400	20
500	10

im

1

- You are requested to allocate the jobs in the memory and to find fragmentation using first fit and best fit memory allocation methods.
- II. Which is the most efficient allocation scheme for the particular problem g above? Justify your answer.