EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS
SECOND EXAMINATION IN SCIENCE - 2008/2009
FIRST SEMESTER (Feb./Mar., 2010)
MT 201 - VECTOR SPACES AND MATRICES

1. Define the term subspace of a vector space.
(a) Let $V=\{f / f: \mathbb{R} \rightarrow \mathbb{R}, f(x)>0, \forall x \in \mathbb{R}\}$. For any $f, g \in V$ and for any $\alpha \in \mathbb{R}$ define an addition \oplus and a scalar multiplication \odot as follows:

$$
(f \oplus g)(x)=f(x) \cdot g(x), \forall x \in \mathbb{R}
$$

and

$$
(\alpha \odot f)(x)=(f(x))^{\alpha} .
$$

Prove that (V, \oplus, \odot) is a vector space over the set of real numbers \mathbb{R}.
(b) i. Let V be a vector space over a field \mathbb{F}. Prove that a non-empty subset W of V is a subspace of V if and only if $\alpha x+\beta y \in W$, for any $x, y \in W$ and $\alpha, \beta \in \mathbb{F}$.
ii. Let $P_{n}=\left\{\sum_{i=0}^{n} a_{i} x^{i}: a_{i} \in \mathbb{R}\right\}$ be the set of all polynomials of degree $\leq n$ with real coefficients. Prove that P_{n} is a subspace of the vector space $V=\left\{\sum_{i=0}^{n} a_{i} x^{i}: a_{i} \in \mathbb{R}, n \in \mathbb{N}\right\}$, the set of all polynomials with real coefficients.

Is it true that the set of polynomials exactly of degree n is a subspace of V ? Justify your answer.
2. Define what is meant by dimension of a vector space.
(a) Let V be an n-dimensional vector space.

Show that
i. a linearly independent set of vectors of V with n elements is a basis for V_{i}
ii. any linearly independent set of vectors of V may be extended to a basis for V;
iii. if $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ is a basis for V then $V=\left\langle\left\{e_{1}, e_{2}, \cdots, e_{r}\right\}\right\rangle \oplus\left\langle\left\{e_{r+1}, e_{r+2}, \cdots\right.\right.$ $\forall r \in\{1,2, \cdots, n-1\}$.
(b) i. Let $w=(1,-1,0,3), x=(2,1,1,-1), y=(4,-1,1,3), z=(1,-4,-1,8)$ be vectors in \mathbb{R}^{4} and let $S=\langle\{w, x, y, z\}\rangle$. Find a basis and the dimension of S. Is the set $\{w, x, y, z\}$ linearly independent?
Extend the basis of S that you obtained to a basis for \mathbb{R}^{4}.
Find also a basis of $S \cap T$, where $T\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}+x_{2}+x_{3}+x_{4}=0\right.$ is a subspace of \mathbb{R}^{4}.
ii. Let $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be any vectors in a vector space. Let $A=\left\langle\left\{x_{1}, x_{2}, \cdots\right.\right.$, and $B=\left\langle\left\{x_{1}, x_{2}, \cdots, x_{n}, x_{n+1}\right\}\right\rangle$. Prove that $\operatorname{dim} B=\operatorname{dim} A+\epsilon$, where is 0 if $x_{n+1} \in A$ and 1 if $x_{n+1} \notin A$.
3. (a) Let $D: P_{n}(t) \rightarrow P_{n-1}(t)$, the derivative operator, be defined by

$$
D(p(t))=a_{1}+2 a_{2} t+\cdots+n a_{n} t^{n-1}
$$

where $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}$ and $P_{n}(t)$ is the set of all polynomial of degree less than or equal to n. Show that D is a linear transformation. Find the matrix representation of D with respect to the bases $\left\{1, t, t^{2}, \cdots, t^{n}\right.$ and $\left\{1,1+t, t+t^{2}, \cdots, t^{n-2}+t^{n-1}\right\}$ of $P_{n}(t)$ and $P_{n-1}(t)$ respectively.
(b) If the matrix representation of a linear transformation
$T: P_{3}(t) \rightarrow P_{3}(t)$ with respect to the bases $\left\{1-t, t-t^{2}, t^{2}-t^{3}, t^{3}\right\}$ and $\left\{1,1+t, t+t^{2}, t^{2}+t^{3}\right\}$ is

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1
\end{array}\right)
$$

then determine T.
(c) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by

$$
T(x, y, z)=(x+2 y, x+y+z, z)
$$

and let $B_{1}=\{(1,1,1),(1,2,3),(2,-1,1)\}$ and $B_{2}=\{(1,1,0),(0,1,1),(1,0,1)\}$ be bases for \mathbb{R}^{3}. Find the matrix representation of T with respect to the basis B_{2} by using the transition matrix.
4. Define what is meant by rank of a matrix.
(a) Let A be an $m \times n$ matrix. Prove the following:
(i) row rank of A is equal to column rank of A;
(ii) if B is a matrix obtained by performing an elementary row operation on A, then A and B have the same rank.
(b) Find the rank of the matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 2 & 0 \\
2 & a+1 & 3 & a-1 \\
-3 & a-2 & a-5 & a+1 \\
a+2 & 2 & a+4 & -2 a
\end{array}\right)
$$

for each possible value of the scalar a.
(c) Find the row reduced echelon form of

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & -1 & 1 \\
1 & 1 & 3 & 3 & 0 & 2 \\
2 & 1 & 3 & 3 & -1 & 3 \\
2 & 1 & 1 & 1 & -2 & 4
\end{array}\right)
$$

5. (a) Define the following terms as applied to an $n \times n$ matrix $A=\left(a_{i j}\right)$.
(i) cofactor $A_{i j}$ of an element $a_{i j}$;
(ii) adjoint of A.

Prove with the usual notations that

$$
A \cdot(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=\operatorname{det} A \cdot I
$$

where I is the $n \times n$ identity matrix.
(b) Prove that if B is a matrix obtained from a square matrix A by
(i) multiplying a row of A by a scalar $\alpha(\neq 0)$ then $\operatorname{det} B=\alpha \operatorname{det} A$.
(ii) interchanging two rows of A, then $\operatorname{det} B=-\operatorname{det} A$.
(c) Let A be an n-square matrix with all elements equal to a. Prove that
i. $\operatorname{det}(A+\lambda I)=\lambda^{n-1}(n a+\lambda)$;
ii. $(A+\lambda I)^{-1}=\frac{1}{\lambda(n a+\lambda)}\left[\begin{array}{cccc}(n-1) a+\lambda & -a & \cdots & -a \\ -a & (n-1) a+\lambda & \cdots & -a \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ -a & -a & \cdots & (n-1) a+\lambda\end{array}\right.$
6. (a) State the necessary and sufficient condition for a system of linear equations to be consistent.

Reduce the augmented matrix of the following system of linear equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

to its row reduced echelon form and hence determine the conditions on non-zero scalars $a_{11}, a_{12}, a_{21}, a_{22}, b_{1}$ and b_{2} such that the system has
(i) a unique solution;
(ii) no solution;
(iii) more than one solution.
(b) Show that the system of equations

$$
\begin{aligned}
x_{1}-3 x_{2}+x_{3}+c x_{4} & =b \\
x_{1}-2 x_{2}+(c-1) x_{3}-x_{4} & =2 \\
2 x_{1}-5 x_{2}+(2-c) x_{3}+(c-1) x_{4} & =3 b+4
\end{aligned}
$$

is consistent, for all values of b if $c \neq 1$. Find the value of b for which the system is consistent if $c=1$ and obtain the general solution for these values.
(c) State and prove Crammer's rule for 3×3 matrix and use it to solve

$$
\begin{array}{r}
3 x_{1}+x_{2}+x_{3}=3 \\
3 x_{1}+2 x_{2}+2 x_{3}=5 \\
2 x_{1}-3 x_{2}-2 x_{3}=1
\end{array}
$$

