

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS
SECOND EXAMINATION IN SCIENCE - 2008/2009 FIRST SEMESTER(Feb./Mar., 2010)
MT 207 - NUMERICAL ANALYSIS (PROPER \& REPEAT)

1. (a) For a five digit decimal floating point number, define the terms mantissa and characteristic.
(b) Explain what is meant by underflow and overflow in a calculation.
[15 marks]
(c) Describe the truncation error when $\sin x$ is approximated by $x$, where

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

[20 marks]
(d) Suppose $a=0.471 \times 10^{-2}$ and $b=-0.185 \times 10^{-4}$, use 3 digit floating point arithmetic to compute $a+b$ and $a-b$ and find the rounding error in each case. Hence find the rounding error in calculating $a^{2}-b^{2}$. [25 marks]

- (e) For a binary computer working with 4 digit in the mantissa, floating point arithmetic, find the bound of the relative round-off error.

2. (a) Using bisection method find a root of the equation $t^{3}+t-9=0$ correct to ot decimal place.
(b) Define fixed points of the iteration,

$$
s_{n+1}=s_{n}+\lambda\left(s_{n}^{3}+s-9\right)
$$

Find an approximate range of values of the constant $\lambda$ such that the iteratic converges to the fixed point near 2 .
[20 mark
(c) Find the order of a given method described by an equation

$$
\epsilon_{r+1}-\epsilon_{r}=-\frac{2 \epsilon_{r} f^{\prime}(\alpha)+\epsilon_{r}^{2} f^{\prime \prime}(\alpha)}{2\left[f^{\prime}(\alpha)+\epsilon_{r} f^{\prime \prime}(\alpha)\right]}
$$

where $\epsilon_{r}$ is the error in approximation after the $r^{\text {th }}$ iteration.
[25 mark
(d) A calculator is defective: it can only add, subtract and multiply. Using th defective calculator and the Newton-Raphson method find an iterative formu to find $\frac{1}{a}$, where $a$ is real number. Hence find a sequence of approximate valu to $\frac{1}{1.37}$ correct to 4 decimal places.
[30 mark
3. (a) Complete the finite difference table for the function $f(x)$ given by

| x | f | $\Delta f$ | $\Delta^{2} f$ | $\Delta^{3} f$ | $\Delta^{4} f$ | $\Delta^{5} f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1.0 | 0.130 |  |  |  |  |  |

$$
0.016
$$

$-0.5 \quad 0.146$ 0.023
$0.0 \quad 0.169$ 0.033
$0.5 \quad 0.202$

0.047

$$
1.0 \quad 0.249
$$

$$
1.5 \quad 0.314
$$

Use a Newton's forward formula to find an approximation to $f(-0.3)$ correct to 3 decimal places.
(b) Using the table given in (a) and a quadratic Lagrange's interpolation, find an approximation $z$ to $f^{\prime}(-0.3)$. Further, using the error term in Lagrange interpolation find an expression for $z-f^{\prime}(x)$ by assuming that the third derivative of $f(x)$ is constant in the interval you have chosen. [40 marks]
(c) The error in Simpson's rule for approximating the integral $I=\int_{a}^{b} f(x) d x$ is

$$
-\frac{(b-a)^{5}}{2880} f^{(4)}(\xi), \quad a<\xi<b
$$

Show that the error in the Composite Simpson's rule for integrating $f(x)$ from $a$ to $b$ is

$$
-\frac{(b-a)}{180} h^{4} f^{(4)}(\theta), \quad a<\theta<b .
$$

(Assume that the fourth derivative of $f(x)$ is continuous in $[a, b]$ )
4. (a) Estimate

$$
\int_{0}^{1} e^{x^{2}} d x
$$

using Simpson's rule and Composite Simpson's rule with 2 strips. If the ex value of the above integral is 1.46265 , what is the rate of decrease of the el with respect to the strip width?
(b) Solve the system of equations:

$$
\begin{array}{r}
x_{1}-x_{2}+2 x_{3}=0 \\
-x_{1}+4 x_{2}+x_{3}=3 \\
2 x_{1}+x_{2}+5 x_{3}=1
\end{array}
$$

by Gaussian elimination and back substitution without interchanging the eq tions.
(c) Carry out 2-iterations of the Jacobi method for solving

$$
\begin{aligned}
10 x-y-3 z & =1 \\
x+10 y-2 z & =0 \\
3 x+2 y+10 z & =-2
\end{aligned}
$$

with initial estimation $(x, y, z)^{T}=(0,0,0)^{T}$.

Describe briefly how the Gauss-Seidel method differs from the Jacobi meth according to the above problem.

