EASTERN UNIVERSITY, SRI LANKA
 SECOND EXAMINATION IN SCIENCE - 2008/2009

 FIRST SEMESTER (PROPER/REPEAT)

 FIRST SEMESTER (PROPER/REPEAT)}
(February 2010)

PH 201 ATOMIC PHYSICS AND QUANTUM MECHANICS

me: 01 hour.
5
aswer ALL Questions
ectron charge $e=1.6 \times 10^{-19} \mathrm{C}$
ass of an electron $m_{e}=9.109 \times 10^{-31} \mathrm{~kg}$
rmittivity in free space $\varepsilon_{o}=8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
locity of light $c=3 \times 10^{8} \mathrm{~ms}^{-1}$
anck's constant $h=6.625 \times 10^{-34} \mathrm{~J}$

$V=1.602 \times 10^{-19} \mathrm{~J}$

1. State the postulates of Bohr regarding his atomic model and hence obtain afrexpyession for the electron energy of the $n^{\text {th }}$ orbit. Hence show that the wavelengti of vers sit t, electromagnetic radiation emitted in a transition between two states of a Bohr atom is given by:

$$
\frac{1}{\lambda}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)
$$

Where λ is the wavelength of the radiation, R is the Rydberg constant and n_{i} and n_{f} are integers.
Deduce the wavelength λ_{α} of the H_{α}-line in the Balmer series of H-atom and show that:

$$
\frac{1}{\lambda_{\alpha}}=\frac{5 R_{H}}{36},
$$

where R_{H} is the Rydberg constant for H-atom.
Hence find the Rydberg constant, if the wavelength of H_{α}-line is $6563 \times 10^{-10} \mathrm{~m}$.
2. Explain briefly what do you understand by photoelectric effect and give Einstein's explanation for the photoelectric effect.
A certain metal has a threshold wavelength of 600 nm . Find the stopping potentials when the metal is irradiated with:
i. Monochromatic light of wavelength 400 nm .
ii. Light having twice the frequency and three times the intensity of wavelength 400 nm .
3. Explain what do you meant by Compton Effect?

Show that the change in wavelength of a photon subject to Compton scattering by an electron is given by:

$$
\Delta \lambda=\frac{h}{m_{0} c}(1-\operatorname{Cos} \phi)
$$

Where ϕ is the scattering angle of the photon and other symbols have their usual meanings.

A beam of X-rays of wavelength 0.01 nm is incident on a carbon target. The scattered rays are detected at an angle of 60° to the direction of the incident beam. Find wavelength of the scattered X-rays.
4. Write down the time independent Schrödinger equation in a rectangular Cartesian ordinate system, for a particle of mass m and the energy E moving in a potential V. Ansv particle of mass m and the energy E moves inside a potential well $V(x)$ as shown in figure.

$$
\begin{aligned}
& V(x)=0 \text { for } 0 \leq x \leq a \\
& V(x) \rightarrow \infty \text { for } x<0 \text { and } x>a
\end{aligned}
$$

a. Write down the time independent Schrödinger equation for the motion of particle.
b. State clearly the boundary conditions and the normalization condition for wave function.
c. Using the above conditions, show that the wave function of the particle is giv by:

$$
\Psi=\sqrt{\frac{2}{a}} \operatorname{Sin}\left(\frac{n \pi}{a}\right) x .
$$

