

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS SECOND EXAMINATION IN SCIENCE - 2008/2009 FIRST SEMESTER (Feb./Mar., 2010) ST 201 - STATISTICAL INFERENCE - I (REPEAT)

nswer all questions

Time : Two hours

- 1. (a) Determine the maximum likelihood estimates of the parameters for the random sample of size n from each population given below:
 - i. Poisson (θ)
 - ii. Normal (μ, σ^2)
 - iii. Bernoulli with p
 - (b) A random sample of X_1, X_2, \ldots, X_n is obtained from the distribution with the probability density

$$f(x) = \frac{3\alpha^3}{(\alpha+x)^4}; \quad x > 0$$

where $\alpha > 0$ is the unknown parameter. Find $\hat{\alpha}$, by the method of moments.

- 2. (a) A random variable X is distributed N(μ, 16). Suppose we know that μ can take one of the two values 2 and 4. A random sample of X₁, X₂,..., X₂₀ is drawn from the distribution to test the simple null hypothesis H₀ : μ = 2 against the simple alternative hypothesis H₁ : μ = 4. Find the best critical region C of size α = 0.025.
 - (b) Derive the likelihood ratio test of hypothesis H₀: μ = μ₀ against H₁: μ ≠ μ₀, where μ is the mean of a normal random variable with variance 1. Assume that a sample of size n is available.

- 3. A random sample X_1, X_2, \ldots, X_n is taken from a Poisson distribution with mean λ and it is required to estimate $\theta = \lambda^2$.
 - (a) Show that the sample mean \overline{X} , is a sufficient statistic for θ .
 - (b) Evaluate $E(\overline{X})$ and $E(\overline{X}^2)$ and hence find an unbiased estimator of θ based on \overline{X} .
 - (c) Find the Gramer-Rao lower bound for the variance of unbiased estimators of θ .
 - (d) Find the efficiency of your estimator in the case n = 1.
- 4. The distribution of $X_{(n)}$, the largest of the *n* observations in a random sample from population that is uniform on $[0, \theta]$.

a)

b)

(i

(ii

- (a) Show that $X_{(n)}$ is a consistent estimate of θ .
- (b) Determine a multiple of \overline{X} that is unbiased and obtain its mean squared error.
- (c) Determine a multiple of $X_{(n)}$ that is unbiased and compute its mean squared error
- (d) What is your conclusions about these estimators?